Normalized defining polynomial
\( x^{12} - 3 x^{11} - 15 x^{10} + 21 x^{9} + 104 x^{8} + 108 x^{7} - 244 x^{6} - 516 x^{5} - 168 x^{4} + \cdots - 832 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-1123021498208518144\) \(\medspace = -\,2^{15}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}17^{11/12}\approx 53.69965587306223$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{4}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{104}a^{10}+\frac{3}{104}a^{9}-\frac{3}{104}a^{8}+\frac{11}{104}a^{7}+\frac{3}{52}a^{6}+\frac{3}{52}a^{4}+\frac{5}{13}a^{3}-\frac{2}{13}a^{2}-\frac{1}{13}a$, $\frac{1}{189967856}a^{11}-\frac{650275}{189967856}a^{10}+\frac{3616855}{189967856}a^{9}+\frac{525019}{14612912}a^{8}-\frac{1166001}{94983928}a^{7}-\frac{19715451}{94983928}a^{6}+\frac{11567655}{47491964}a^{5}-\frac{288615}{23745982}a^{4}-\frac{1797660}{11872991}a^{3}+\frac{305017}{11872991}a^{2}+\frac{1606536}{11872991}a-\frac{76343}{913307}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1297743}{189967856}a^{11}-\frac{253415}{14612912}a^{10}-\frac{19539905}{189967856}a^{9}+\frac{17275787}{189967856}a^{8}+\frac{6639198}{11872991}a^{7}+\frac{95162217}{94983928}a^{6}+\frac{13417977}{47491964}a^{5}-\frac{97687725}{47491964}a^{4}-\frac{98575393}{23745982}a^{3}-\frac{39212837}{23745982}a^{2}+\frac{43953287}{11872991}a+\frac{3776125}{913307}$, $\frac{15858723}{189967856}a^{11}-\frac{2107593}{14612912}a^{10}-\frac{276888719}{189967856}a^{9}-\frac{4403927}{189967856}a^{8}+\frac{845460585}{94983928}a^{7}+\frac{1883406305}{94983928}a^{6}+\frac{80166711}{23745982}a^{5}-\frac{1936942017}{47491964}a^{4}-\frac{1483820417}{23745982}a^{3}-\frac{294431269}{23745982}a^{2}+\frac{638483042}{11872991}a+\frac{53986999}{913307}$, $\frac{238299}{1826614}a^{11}-\frac{906991}{3653228}a^{10}-\frac{4019325}{1826614}a^{9}+\frac{231754}{913307}a^{8}+\frac{12215916}{913307}a^{7}+\frac{106710233}{3653228}a^{6}+\frac{2897145}{913307}a^{5}-\frac{109341533}{1826614}a^{4}-\frac{82972128}{913307}a^{3}-\frac{15118394}{913307}a^{2}+\frac{69442416}{913307}a+\frac{73994209}{913307}$, $\frac{19899489}{189967856}a^{11}-\frac{35830833}{189967856}a^{10}-\frac{337106417}{189967856}a^{9}+\frac{6112031}{189967856}a^{8}+\frac{996971943}{94983928}a^{7}+\frac{569873541}{23745982}a^{6}+\frac{293341703}{47491964}a^{5}-\frac{995638373}{23745982}a^{4}-\frac{838378647}{11872991}a^{3}-\frac{480733169}{23745982}a^{2}+\frac{591577309}{11872991}a+\frac{57493651}{913307}$, $\frac{1221843}{189967856}a^{11}-\frac{2532175}{189967856}a^{10}-\frac{20669573}{189967856}a^{9}+\frac{8758887}{189967856}a^{8}+\frac{31137127}{47491964}a^{7}+\frac{111958335}{94983928}a^{6}+\frac{234477}{23745982}a^{5}-\frac{31395008}{11872991}a^{4}-\frac{86173011}{23745982}a^{3}-\frac{89853}{913307}a^{2}+\frac{37095308}{11872991}a+\frac{2363603}{913307}$, $\frac{1399}{7306456}a^{11}-\frac{80953}{7306456}a^{10}+\frac{259365}{7306456}a^{9}+\frac{809175}{7306456}a^{8}-\frac{245601}{913307}a^{7}-\frac{239464}{913307}a^{6}-\frac{2214697}{3653228}a^{5}-\frac{1003998}{913307}a^{4}-\frac{1184338}{913307}a^{3}-\frac{504479}{913307}a^{2}+\frac{2530595}{913307}a+\frac{4119533}{913307}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 128617.729182 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 128617.729182 \cdot 2}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 4.75407616922 \end{aligned}\]
Galois group
$D_6\wr C_2$ (as 12T125):
A solvable group of order 288 |
The 27 conjugacy class representatives for $D_6\wr C_2$ |
Character table for $D_6\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.2.39304.1, 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.35094421819016192.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.2.0.1}{2} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{6}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
2.6.9.5 | $x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |