Properties

Label 12.2.100...184.1
Degree $12$
Signature $[2, 5]$
Discriminant $-1.007\times 10^{25}$
Root discriminant \(121.22\)
Ramified primes $2,11,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\PGL(2,11)$ (as 12T218)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323)
 
gp: K = bnfinit(y^12 - 2*y^11 - 44*y^10 + 44*y^9 + 847*y^8 - 924*y^7 - 8844*y^6 + 19272*y^5 + 20075*y^4 - 156442*y^3 + 83600*y^2 + 359236*y - 470323, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323)
 

\( x^{12} - 2 x^{11} - 44 x^{10} + 44 x^{9} + 847 x^{8} - 924 x^{7} - 8844 x^{6} + 19272 x^{5} + \cdots - 470323 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-10069154974041885785533184\) \(\medspace = -\,2^{8}\cdot 11^{11}\cdot 13^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(121.22\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2/3}11^{119/110}13^{10/11}\approx 218.75600312740116$
Ramified primes:   \(2\), \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{24}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{7}{24}$, $\frac{1}{48}a^{9}-\frac{1}{48}a^{8}-\frac{1}{8}a^{7}-\frac{1}{8}a^{6}-\frac{1}{8}a^{3}-\frac{1}{8}a^{2}+\frac{11}{48}a+\frac{13}{48}$, $\frac{1}{144}a^{10}-\frac{1}{144}a^{8}-\frac{1}{12}a^{7}+\frac{1}{24}a^{6}+\frac{1}{12}a^{5}+\frac{1}{24}a^{4}-\frac{1}{4}a^{3}+\frac{65}{144}a^{2}+\frac{1}{4}a+\frac{67}{144}$, $\frac{1}{82\!\cdots\!76}a^{11}+\frac{55\!\cdots\!63}{74\!\cdots\!16}a^{10}-\frac{19\!\cdots\!61}{37\!\cdots\!08}a^{9}-\frac{40\!\cdots\!77}{37\!\cdots\!08}a^{8}-\frac{43\!\cdots\!53}{51\!\cdots\!89}a^{7}+\frac{10\!\cdots\!43}{62\!\cdots\!68}a^{6}+\frac{15\!\cdots\!43}{12\!\cdots\!36}a^{5}+\frac{64\!\cdots\!15}{12\!\cdots\!36}a^{4}+\frac{12\!\cdots\!77}{74\!\cdots\!16}a^{3}-\frac{13\!\cdots\!43}{74\!\cdots\!16}a^{2}-\frac{60\!\cdots\!83}{18\!\cdots\!04}a+\frac{14\!\cdots\!31}{20\!\cdots\!44}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1025169327805}{22\!\cdots\!16}a^{11}-\frac{16\!\cdots\!51}{74\!\cdots\!16}a^{10}-\frac{136576463254414}{15\!\cdots\!67}a^{9}+\frac{91\!\cdots\!45}{74\!\cdots\!16}a^{8}+\frac{59\!\cdots\!20}{15\!\cdots\!67}a^{7}-\frac{23\!\cdots\!83}{12\!\cdots\!36}a^{6}-\frac{40\!\cdots\!69}{62\!\cdots\!68}a^{5}+\frac{26\!\cdots\!61}{12\!\cdots\!36}a^{4}+\frac{52\!\cdots\!31}{20\!\cdots\!56}a^{3}-\frac{82\!\cdots\!03}{74\!\cdots\!16}a^{2}+\frac{12\!\cdots\!11}{62\!\cdots\!68}a+\frac{57\!\cdots\!71}{82\!\cdots\!76}$, $\frac{2841978155909}{13\!\cdots\!62}a^{11}-\frac{7164756392923}{17\!\cdots\!16}a^{10}-\frac{11\!\cdots\!27}{10\!\cdots\!96}a^{9}+\frac{287379894068303}{35\!\cdots\!32}a^{8}+\frac{41\!\cdots\!35}{17\!\cdots\!16}a^{7}-\frac{13\!\cdots\!49}{17\!\cdots\!16}a^{6}-\frac{12\!\cdots\!95}{43\!\cdots\!54}a^{5}+\frac{12\!\cdots\!83}{731393724896759}a^{4}+\frac{66\!\cdots\!53}{52\!\cdots\!48}a^{3}-\frac{13\!\cdots\!19}{87\!\cdots\!08}a^{2}-\frac{34\!\cdots\!97}{10\!\cdots\!96}a+\frac{95\!\cdots\!35}{11\!\cdots\!44}$, $\frac{46\!\cdots\!77}{41\!\cdots\!88}a^{11}-\frac{26\!\cdots\!93}{37\!\cdots\!08}a^{10}-\frac{14\!\cdots\!05}{74\!\cdots\!16}a^{9}+\frac{98\!\cdots\!33}{74\!\cdots\!16}a^{8}+\frac{16\!\cdots\!27}{41\!\cdots\!12}a^{7}-\frac{33\!\cdots\!37}{12\!\cdots\!36}a^{6}+\frac{26\!\cdots\!61}{15\!\cdots\!67}a^{5}+\frac{90\!\cdots\!29}{62\!\cdots\!68}a^{4}-\frac{18\!\cdots\!76}{46\!\cdots\!01}a^{3}-\frac{12\!\cdots\!63}{18\!\cdots\!04}a^{2}+\frac{92\!\cdots\!41}{74\!\cdots\!16}a-\frac{10\!\cdots\!67}{82\!\cdots\!76}$, $\frac{42\!\cdots\!87}{82\!\cdots\!76}a^{11}-\frac{80\!\cdots\!77}{24\!\cdots\!72}a^{10}-\frac{65\!\cdots\!89}{74\!\cdots\!16}a^{9}+\frac{15\!\cdots\!93}{24\!\cdots\!72}a^{8}+\frac{22\!\cdots\!93}{12\!\cdots\!36}a^{7}-\frac{15\!\cdots\!15}{12\!\cdots\!36}a^{6}+\frac{95\!\cdots\!25}{12\!\cdots\!36}a^{5}+\frac{27\!\cdots\!63}{41\!\cdots\!12}a^{4}-\frac{13\!\cdots\!11}{74\!\cdots\!16}a^{3}-\frac{77\!\cdots\!33}{24\!\cdots\!72}a^{2}+\frac{41\!\cdots\!35}{74\!\cdots\!16}a-\frac{51\!\cdots\!51}{91\!\cdots\!64}$, $\frac{74\!\cdots\!13}{51\!\cdots\!11}a^{11}-\frac{30\!\cdots\!79}{20\!\cdots\!56}a^{10}-\frac{30\!\cdots\!24}{46\!\cdots\!01}a^{9}-\frac{25\!\cdots\!37}{12\!\cdots\!36}a^{8}+\frac{19\!\cdots\!24}{15\!\cdots\!67}a^{7}-\frac{39\!\cdots\!37}{31\!\cdots\!34}a^{6}-\frac{42\!\cdots\!87}{31\!\cdots\!34}a^{5}+\frac{27\!\cdots\!51}{20\!\cdots\!56}a^{4}+\frac{22\!\cdots\!88}{46\!\cdots\!01}a^{3}-\frac{36\!\cdots\!65}{20\!\cdots\!56}a^{2}-\frac{71\!\cdots\!19}{93\!\cdots\!02}a+\frac{23\!\cdots\!19}{45\!\cdots\!32}$, $\frac{36\!\cdots\!63}{37\!\cdots\!08}a^{11}-\frac{14\!\cdots\!33}{74\!\cdots\!16}a^{10}-\frac{17\!\cdots\!01}{37\!\cdots\!08}a^{9}+\frac{31\!\cdots\!51}{74\!\cdots\!16}a^{8}+\frac{22\!\cdots\!13}{20\!\cdots\!56}a^{7}-\frac{66\!\cdots\!77}{12\!\cdots\!36}a^{6}-\frac{42\!\cdots\!97}{31\!\cdots\!34}a^{5}+\frac{11\!\cdots\!99}{12\!\cdots\!36}a^{4}+\frac{28\!\cdots\!15}{37\!\cdots\!08}a^{3}-\frac{53\!\cdots\!45}{74\!\cdots\!16}a^{2}-\frac{54\!\cdots\!91}{37\!\cdots\!08}a+\frac{14\!\cdots\!35}{74\!\cdots\!16}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 826076900.482 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{5}\cdot 826076900.482 \cdot 1}{2\cdot\sqrt{10069154974041885785533184}}\cr\approx \mathstrut & 5.09862772338 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - 44*x^10 + 44*x^9 + 847*x^8 - 924*x^7 - 8844*x^6 + 19272*x^5 + 20075*x^4 - 156442*x^3 + 83600*x^2 + 359236*x - 470323);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\PGL(2,11)$ (as 12T218):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 1320
The 13 conjugacy class representatives for $\PGL(2,11)$
Character table for $\PGL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Degree 24 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.2.0.1}{2} }^{6}$ ${\href{/padicField/5.6.0.1}{6} }^{2}$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ R R ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.11.0.1}{11} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.6.4.1$x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.11.11.10$x^{11} + 33 x + 11$$11$$1$$11$$F_{11}$$[11/10]_{10}$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
13.11.10.1$x^{11} + 13$$11$$1$$10$$F_{11}$$[\ ]_{11}^{10}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.11.2t1.a.a$1$ $ 11 $ \(\Q(\sqrt{-11}) \) $C_2$ (as 2T1) $1$ $-1$
10.251...296.55.a.a$10$ $ 2^{6} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.100...184.55.a.a$10$ $ 2^{8} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.251...296.110.a.a$10$ $ 2^{6} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.251...296.22t14.a.a$10$ $ 2^{6} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $0$
10.251...296.22t14.a.b$10$ $ 2^{6} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $0$
* 11.100...184.12t218.a.a$11$ $ 2^{8} \cdot 11^{11} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $1$
11.110...024.24t2949.a.a$11$ $ 2^{8} \cdot 11^{12} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $-1$
12.121...264.55.a.a$12$ $ 2^{8} \cdot 11^{13} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $2$
12.121...264.110.a.a$12$ $ 2^{8} \cdot 11^{13} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $-2$
12.121...264.110.a.b$12$ $ 2^{8} \cdot 11^{13} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $-2$
12.121...264.55.a.b$12$ $ 2^{8} \cdot 11^{13} \cdot 13^{10}$ 12.2.10069154974041885785533184.1 $\PGL(2,11)$ (as 12T218) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.