Normalized defining polynomial
\( x^{12} - x^{11} - 36 x^{10} + 27 x^{9} + 394 x^{8} - 223 x^{7} - 1578 x^{6} + 448 x^{5} + 2307 x^{4} + \cdots + 13 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(96735773996756764337\) \(\medspace = 13^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(46.29\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $13^{2/3}17^{3/4}\approx 46.28769904177523$ | ||
Ramified primes: | \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(221=13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{221}(1,·)$, $\chi_{221}(35,·)$, $\chi_{221}(55,·)$, $\chi_{221}(16,·)$, $\chi_{221}(81,·)$, $\chi_{221}(118,·)$, $\chi_{221}(183,·)$, $\chi_{221}(152,·)$, $\chi_{221}(217,·)$, $\chi_{221}(157,·)$, $\chi_{221}(120,·)$, $\chi_{221}(191,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}$, $\frac{1}{75866712768914}a^{11}-\frac{1942026629465}{37933356384457}a^{10}-\frac{7870598773781}{37933356384457}a^{9}+\frac{10063355884973}{37933356384457}a^{8}-\frac{11249884673311}{75866712768914}a^{7}-\frac{8394725357827}{75866712768914}a^{6}-\frac{18792187102377}{37933356384457}a^{5}-\frac{127091366651}{37933356384457}a^{4}-\frac{16826114168744}{37933356384457}a^{3}+\frac{12019764729589}{37933356384457}a^{2}-\frac{5893976261595}{75866712768914}a+\frac{10248914708540}{37933356384457}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{510353099531}{37933356384457}a^{11}-\frac{585867876369}{37933356384457}a^{10}-\frac{18298175170166}{37933356384457}a^{9}+\frac{16664494610623}{37933356384457}a^{8}+\frac{199089393746483}{37933356384457}a^{7}-\frac{149263732165508}{37933356384457}a^{6}-\frac{790386870014119}{37933356384457}a^{5}+\frac{401689365773603}{37933356384457}a^{4}+\frac{11\!\cdots\!68}{37933356384457}a^{3}-\frac{230881727005371}{37933356384457}a^{2}-\frac{436650027774856}{37933356384457}a+\frac{21018609717712}{37933356384457}$, $\frac{695220930595}{37933356384457}a^{11}-\frac{947349571163}{37933356384457}a^{10}-\frac{24379735126424}{37933356384457}a^{9}+\frac{27278753347726}{37933356384457}a^{8}+\frac{253328936247653}{37933356384457}a^{7}-\frac{237595694324472}{37933356384457}a^{6}-\frac{900628392996763}{37933356384457}a^{5}+\frac{556970262829275}{37933356384457}a^{4}+\frac{10\!\cdots\!14}{37933356384457}a^{3}-\frac{69696292447352}{37933356384457}a^{2}-\frac{184948842805204}{37933356384457}a-\frac{39270743397734}{37933356384457}$, $\frac{34803738330}{37933356384457}a^{11}-\frac{571778152696}{37933356384457}a^{10}-\frac{319343500110}{37933356384457}a^{9}+\frac{19287745186240}{37933356384457}a^{8}-\frac{14342965774450}{37933356384457}a^{7}-\frac{188897948298568}{37933356384457}a^{6}+\frac{200541877067258}{37933356384457}a^{5}+\frac{588282580650355}{37933356384457}a^{4}-\frac{599746880441960}{37933356384457}a^{3}-\frac{521647058349391}{37933356384457}a^{2}+\frac{321163538335367}{37933356384457}a+\frac{90426547098989}{37933356384457}$, $\frac{811446745941}{75866712768914}a^{11}-\frac{524644244367}{75866712768914}a^{10}-\frac{14915156736443}{37933356384457}a^{9}+\frac{5985231549474}{37933356384457}a^{8}+\frac{338581883962293}{75866712768914}a^{7}-\frac{39299194058751}{37933356384457}a^{6}-\frac{14\!\cdots\!51}{75866712768914}a^{5}+\frac{2005559932209}{37933356384457}a^{4}+\frac{11\!\cdots\!49}{37933356384457}a^{3}+\frac{270247490696118}{37933356384457}a^{2}-\frac{604974693685141}{75866712768914}a-\frac{116428109908917}{75866712768914}$, $\frac{1971367898323}{75866712768914}a^{11}-\frac{3983492607889}{75866712768914}a^{10}-\frac{33852018906829}{37933356384457}a^{9}+\frac{61225216532577}{37933356384457}a^{8}+\frac{679388808357459}{75866712768914}a^{7}-\frac{566358822821395}{37933356384457}a^{6}-\frac{22\!\cdots\!57}{75866712768914}a^{5}+\frac{15\!\cdots\!22}{37933356384457}a^{4}+\frac{10\!\cdots\!97}{37933356384457}a^{3}-\frac{10\!\cdots\!35}{37933356384457}a^{2}-\frac{269487308662299}{75866712768914}a+\frac{59715159615721}{75866712768914}$, $\frac{743971678535}{37933356384457}a^{11}-\frac{1556520943221}{37933356384457}a^{10}-\frac{24717553038479}{37933356384457}a^{9}+\frac{48020555703591}{37933356384457}a^{8}+\frac{227848354747199}{37933356384457}a^{7}-\frac{449651113039179}{37933356384457}a^{6}-\frac{559290488687624}{37933356384457}a^{5}+\frac{12\!\cdots\!07}{37933356384457}a^{4}-\frac{47710779397987}{37933356384457}a^{3}-\frac{898055992920298}{37933356384457}a^{2}+\frac{460625547404954}{37933356384457}a-\frac{36948952464217}{37933356384457}$, $\frac{62840471613}{37933356384457}a^{11}+\frac{235793571089}{37933356384457}a^{10}-\frac{2853566254067}{37933356384457}a^{9}-\frac{7947359427491}{37933356384457}a^{8}+\frac{42270054339596}{37933356384457}a^{7}+\frac{68090652524552}{37933356384457}a^{6}-\frac{249951514077438}{37933356384457}a^{5}-\frac{113887699056641}{37933356384457}a^{4}+\frac{472856543219368}{37933356384457}a^{3}-\frac{163073588146709}{37933356384457}a^{2}-\frac{66719299090461}{37933356384457}a+\frac{14962708016767}{37933356384457}$, $\frac{137585486205}{75866712768914}a^{11}-\frac{208736264404}{37933356384457}a^{10}-\frac{3973915430231}{75866712768914}a^{9}+\frac{13112555934025}{75866712768914}a^{8}+\frac{11097517784025}{37933356384457}a^{7}-\frac{61377578145168}{37933356384457}a^{6}+\frac{48188504450488}{37933356384457}a^{5}+\frac{340490877325427}{75866712768914}a^{4}-\frac{657650337685131}{75866712768914}a^{3}-\frac{114605098672585}{75866712768914}a^{2}+\frac{187259287823772}{37933356384457}a+\frac{675090121791}{75866712768914}$, $\frac{761236507291}{75866712768914}a^{11}-\frac{287830634730}{37933356384457}a^{10}-\frac{13102841275750}{37933356384457}a^{9}+\frac{7044900236869}{37933356384457}a^{8}+\frac{257599024218635}{75866712768914}a^{7}-\frac{112899077379949}{75866712768914}a^{6}-\frac{396165741073800}{37933356384457}a^{5}+\frac{108296048616395}{37933356384457}a^{4}+\frac{278063283201535}{37933356384457}a^{3}-\frac{7725681698793}{37933356384457}a^{2}+\frac{41672564265587}{75866712768914}a-\frac{3561075620431}{37933356384457}$, $\frac{978259871159}{75866712768914}a^{11}-\frac{298577075561}{37933356384457}a^{10}-\frac{17912845456947}{37933356384457}a^{9}+\frac{6423908725579}{37933356384457}a^{8}+\frac{403985373583763}{75866712768914}a^{7}-\frac{72659653919963}{75866712768914}a^{6}-\frac{859132571762306}{37933356384457}a^{5}-\frac{56405111984405}{37933356384457}a^{4}+\frac{13\!\cdots\!51}{37933356384457}a^{3}+\frac{422621537488524}{37933356384457}a^{2}-\frac{10\!\cdots\!05}{75866712768914}a-\frac{141356228669640}{37933356384457}$, $\frac{1927558989619}{37933356384457}a^{11}-\frac{1945932059587}{37933356384457}a^{10}-\frac{69604788434245}{37933356384457}a^{9}+\frac{52469926418941}{37933356384457}a^{8}+\frac{766682838712338}{37933356384457}a^{7}-\frac{427350023145544}{37933356384457}a^{6}-\frac{31\!\cdots\!99}{37933356384457}a^{5}+\frac{798208708528270}{37933356384457}a^{4}+\frac{45\!\cdots\!59}{37933356384457}a^{3}+\frac{521324174510198}{37933356384457}a^{2}-\frac{15\!\cdots\!21}{37933356384457}a-\frac{356676928793026}{37933356384457}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1140840.44185 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1140840.44185 \cdot 1}{2\cdot\sqrt{96735773996756764337}}\cr\approx \mathstrut & 0.237553429737 \end{aligned}\]
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.169.1, 4.4.4913.1, 6.6.140320193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(13\) | 13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |