Normalized defining polynomial
\( x^{12} - 64290 x^{10} - 1521160 x^{9} + 1413391275 x^{8} + 55149567840 x^{7} - 11816325894450 x^{6} - 551549392646400 x^{5} + 24196102698409425 x^{4} + 906390235169823000 x^{3} + 9912416687818565400 x^{2} + 43526001864084588000 x + 64178007246927738000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80395305020560195610021041260875524780564497501562500000000=2^{8}\cdot 3^{16}\cdot 5^{14}\cdot 7^{8}\cdot 137^{6}\cdot 5599914953^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81{,}053.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 137, 5599914953$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{40} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{560} a^{6} - \frac{45}{112} a^{4} + \frac{9}{28} a^{3} - \frac{23}{112} a^{2} - \frac{3}{28} a + \frac{5}{28}$, $\frac{1}{8400} a^{7} + \frac{1}{1680} a^{6} - \frac{1}{560} a^{5} + \frac{19}{80} a^{4} - \frac{11}{112} a^{3} - \frac{257}{560} a^{2} + \frac{15}{56} a - \frac{5}{14}$, $\frac{1}{16800} a^{8} - \frac{1}{16800} a^{7} - \frac{1}{1120} a^{5} + \frac{27}{70} a^{4} + \frac{193}{1120} a^{3} - \frac{53}{1120} a^{2} + \frac{13}{56} a + \frac{5}{56}$, $\frac{1}{16800} a^{9} - \frac{1}{16800} a^{7} - \frac{1}{1120} a^{6} + \frac{11}{1120} a^{5} + \frac{69}{224} a^{4} - \frac{73}{1120} a^{2} - \frac{3}{56} a + \frac{19}{56}$, $\frac{1}{100800} a^{10} - \frac{1}{50400} a^{9} - \frac{1}{50400} a^{8} - \frac{1}{16800} a^{7} + \frac{1}{2240} a^{6} - \frac{3}{1120} a^{5} + \frac{17}{840} a^{4} - \frac{269}{1680} a^{3} + \frac{3337}{6720} a^{2} + \frac{3}{112} a + \frac{39}{112}$, $\frac{1}{9765557535478334155453447748579665103813592217255743869842760616307200} a^{11} - \frac{11199729762230301023293837693482995145239441467689403659465210793}{4882778767739167077726723874289832551906796108627871934921380308153600} a^{10} - \frac{119324899843147109203132263529243684595435867730719648851270339519}{4882778767739167077726723874289832551906796108627871934921380308153600} a^{9} - \frac{81370178681022285685142914668983667396896142187976129162103001}{2980939418644180145132310057564000336939435963753279569549072227200} a^{8} + \frac{62401590595114580941055357718878756221425938202668114785797903947}{1085061948386481572828160860953296122645954690806193763315862290700800} a^{7} + \frac{5550450462717178352854467290007097932990764717180029001972437711}{15500884976949736754688012299332801752085067011517053761655175581440} a^{6} + \frac{416692494458548277452886831468655141566376492847842317152678587701}{46502654930849210264064036897998405256255201034551161284965526744320} a^{5} - \frac{3978782282637128136530690110261680825050676473038699176609747055903}{32551858451594447184844825828598883679378640724185812899475868721024} a^{4} - \frac{259111550171248026639914450837003395102828124665422076237140033377033}{651037169031888943696896516571977673587572814483716257989517374420480} a^{3} - \frac{1638895811320368695780164436317896120661327282407706707167308426369}{12056243870960906364757342899481068029399496564513264036842914341120} a^{2} - \frac{52567928603764423888253791153612958568754809019704755089936958441}{516696165898324558489600409977760058402835567050568458721839186048} a + \frac{594153128810207086417907816919330816717060432435417917027334457355}{1808436580644135954713601434922160204409924484676989605526437151168}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 141592770050000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{12}$ (as 12T300):
| A non-solvable group of order 239500800 |
| The 43 conjugacy class representatives for $A_{12}$ |
| Character table for $A_{12}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.5 | $x^{6} + 3 x^{3} + 6$ | $6$ | $1$ | $11$ | $S_3^2$ | $[2, 5/2]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.10.13.4 | $x^{10} + 5 x^{4} + 5$ | $10$ | $1$ | $13$ | $F_{5}\times C_2$ | $[3/2]_{2}^{4}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $137$ | 137.12.6.1 | $x^{12} + 149138474 x^{6} - 48261724457 x^{2} + 5560571106762169$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5599914953 | Data not computed | ||||||