\\ Pari/GP code for working with number field 12.12.737698544105842578608128.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^12 - 4*y^11 - 57*y^10 + 226*y^9 + 906*y^8 - 3428*y^7 - 5159*y^6 + 18006*y^5 + 10833*y^4 - 34220*y^3 - 4958*y^2 + 20914*y - 3371, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^12 - 4*x^11 - 57*x^10 + 226*x^9 + 906*x^8 - 3428*x^7 - 5159*x^6 + 18006*x^5 + 10833*x^4 - 34220*x^3 - 4958*x^2 + 20914*x - 3371, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])