Properties

Label 12.12.7007073538...0832.1
Degree $12$
Signature $[12, 0]$
Discriminant $2^{33}\cdot 13^{8}$
Root discriminant $37.19$
Ramified primes $2, 13$
Class number $1$
Class group Trivial
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-79, 256, 184, -1100, 194, 1276, -406, -508, 159, 80, -22, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 22*x^10 + 80*x^9 + 159*x^8 - 508*x^7 - 406*x^6 + 1276*x^5 + 194*x^4 - 1100*x^3 + 184*x^2 + 256*x - 79)
 
gp: K = bnfinit(x^12 - 4*x^11 - 22*x^10 + 80*x^9 + 159*x^8 - 508*x^7 - 406*x^6 + 1276*x^5 + 194*x^4 - 1100*x^3 + 184*x^2 + 256*x - 79, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} - 22 x^{10} + 80 x^{9} + 159 x^{8} - 508 x^{7} - 406 x^{6} + 1276 x^{5} + 194 x^{4} - 1100 x^{3} + 184 x^{2} + 256 x - 79 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7007073538075000832=2^{33}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(208=2^{4}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{208}(1,·)$, $\chi_{208}(165,·)$, $\chi_{208}(81,·)$, $\chi_{208}(9,·)$, $\chi_{208}(29,·)$, $\chi_{208}(157,·)$, $\chi_{208}(113,·)$, $\chi_{208}(53,·)$, $\chi_{208}(105,·)$, $\chi_{208}(185,·)$, $\chi_{208}(61,·)$, $\chi_{208}(133,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{463} a^{10} + \frac{10}{463} a^{9} + \frac{200}{463} a^{8} - \frac{4}{463} a^{7} - \frac{165}{463} a^{6} + \frac{95}{463} a^{5} - \frac{105}{463} a^{4} + \frac{188}{463} a^{3} - \frac{228}{463} a^{2} + \frac{12}{463} a + \frac{176}{463}$, $\frac{1}{7333457} a^{11} + \frac{3752}{7333457} a^{10} + \frac{3274453}{7333457} a^{9} + \frac{2459644}{7333457} a^{8} - \frac{1970382}{7333457} a^{7} - \frac{2025781}{7333457} a^{6} - \frac{1092879}{7333457} a^{5} + \frac{854137}{7333457} a^{4} + \frac{2626107}{7333457} a^{3} - \frac{2266240}{7333457} a^{2} - \frac{2716252}{7333457} a + \frac{782213}{7333457}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 329963.498245 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{2}) \), 3.3.169.1, \(\Q(\zeta_{16})^+\), 6.6.14623232.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.33.375$x^{12} - 4 x^{10} + 26 x^{8} + 8 x^{6} - 24 x^{4} + 32 x^{2} + 8$$4$$3$$33$$C_{12}$$[3, 4]^{3}$
$13$13.12.8.1$x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e4.4t1.1c1$1$ $ 2^{4}$ $x^{4} - 4 x^{2} + 2$ $C_4$ (as 4T1) $0$ $1$
* 1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
* 1.2e4.4t1.1c2$1$ $ 2^{4}$ $x^{4} - 4 x^{2} + 2$ $C_4$ (as 4T1) $0$ $1$
* 1.13.3t1.1c1$1$ $ 13 $ $x^{3} - x^{2} - 4 x - 1$ $C_3$ (as 3T1) $0$ $1$
* 1.2e4_13.12t1.2c1$1$ $ 2^{4} \cdot 13 $ $x^{12} - 4 x^{11} - 22 x^{10} + 80 x^{9} + 159 x^{8} - 508 x^{7} - 406 x^{6} + 1276 x^{5} + 194 x^{4} - 1100 x^{3} + 184 x^{2} + 256 x - 79$ $C_{12}$ (as 12T1) $0$ $1$
* 1.2e3_13.6t1.2c1$1$ $ 2^{3} \cdot 13 $ $x^{6} - 2 x^{5} - 13 x^{4} + 14 x^{3} + 26 x^{2} - 28 x + 1$ $C_6$ (as 6T1) $0$ $1$
* 1.2e4_13.12t1.2c2$1$ $ 2^{4} \cdot 13 $ $x^{12} - 4 x^{11} - 22 x^{10} + 80 x^{9} + 159 x^{8} - 508 x^{7} - 406 x^{6} + 1276 x^{5} + 194 x^{4} - 1100 x^{3} + 184 x^{2} + 256 x - 79$ $C_{12}$ (as 12T1) $0$ $1$
* 1.13.3t1.1c2$1$ $ 13 $ $x^{3} - x^{2} - 4 x - 1$ $C_3$ (as 3T1) $0$ $1$
* 1.2e4_13.12t1.2c3$1$ $ 2^{4} \cdot 13 $ $x^{12} - 4 x^{11} - 22 x^{10} + 80 x^{9} + 159 x^{8} - 508 x^{7} - 406 x^{6} + 1276 x^{5} + 194 x^{4} - 1100 x^{3} + 184 x^{2} + 256 x - 79$ $C_{12}$ (as 12T1) $0$ $1$
* 1.2e3_13.6t1.2c2$1$ $ 2^{3} \cdot 13 $ $x^{6} - 2 x^{5} - 13 x^{4} + 14 x^{3} + 26 x^{2} - 28 x + 1$ $C_6$ (as 6T1) $0$ $1$
* 1.2e4_13.12t1.2c4$1$ $ 2^{4} \cdot 13 $ $x^{12} - 4 x^{11} - 22 x^{10} + 80 x^{9} + 159 x^{8} - 508 x^{7} - 406 x^{6} + 1276 x^{5} + 194 x^{4} - 1100 x^{3} + 184 x^{2} + 256 x - 79$ $C_{12}$ (as 12T1) $0$ $1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.