Normalized defining polynomial
\( x^{12} - x^{11} - 28 x^{10} + 31 x^{9} + 232 x^{8} - 249 x^{7} - 742 x^{6} + 716 x^{5} + 925 x^{4} + \cdots + 13 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(683635509017782097\) \(\medspace = 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(30.64\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{2/3}17^{3/4}\approx 30.636234448963954$ | ||
Ramified primes: | \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(119=7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{119}(64,·)$, $\chi_{119}(1,·)$, $\chi_{119}(67,·)$, $\chi_{119}(4,·)$, $\chi_{119}(72,·)$, $\chi_{119}(106,·)$, $\chi_{119}(18,·)$, $\chi_{119}(16,·)$, $\chi_{119}(81,·)$, $\chi_{119}(50,·)$, $\chi_{119}(86,·)$, $\chi_{119}(30,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{26}a^{10}+\frac{5}{26}a^{9}+\frac{3}{26}a^{8}-\frac{11}{26}a^{7}-\frac{1}{2}a^{5}-\frac{1}{26}a^{4}-\frac{5}{26}a^{3}-\frac{3}{26}a^{2}+\frac{11}{26}a$, $\frac{1}{1257508226}a^{11}-\frac{223763}{96731402}a^{10}-\frac{14378841}{1257508226}a^{9}+\frac{1362805}{96731402}a^{8}-\frac{29079848}{628754113}a^{7}+\frac{23510455}{96731402}a^{6}+\frac{447519435}{1257508226}a^{5}-\frac{23296539}{96731402}a^{4}-\frac{282073237}{1257508226}a^{3}-\frac{27729885}{96731402}a^{2}-\frac{31149152}{628754113}a-\frac{513474}{48365701}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{194301961}{628754113}a^{11}-\frac{22811813}{628754113}a^{10}-\frac{5488778574}{628754113}a^{9}+\frac{1213760645}{628754113}a^{8}+\frac{46902107283}{628754113}a^{7}-\frac{615693990}{48365701}a^{6}-\frac{156799562721}{628754113}a^{5}+\frac{8122460279}{628754113}a^{4}+\frac{200903468486}{628754113}a^{3}+\frac{7948625445}{628754113}a^{2}-\frac{78601234262}{628754113}a-\frac{280736624}{48365701}$, $\frac{157749015}{628754113}a^{11}-\frac{39049889}{628754113}a^{10}-\frac{4434839144}{628754113}a^{9}+\frac{1538342288}{628754113}a^{8}+\frac{37453049031}{628754113}a^{7}-\frac{819397522}{48365701}a^{6}-\frac{122928854667}{628754113}a^{5}+\frac{17065446861}{628754113}a^{4}+\frac{154007883960}{628754113}a^{3}+\frac{124227296}{628754113}a^{2}-\frac{58955720546}{628754113}a-\frac{232367843}{48365701}$, $\frac{209360035}{1257508226}a^{11}-\frac{53068963}{1257508226}a^{10}-\frac{2928947569}{628754113}a^{9}+\frac{1026597983}{628754113}a^{8}+\frac{48958849737}{1257508226}a^{7}-\frac{529801412}{48365701}a^{6}-\frac{157640187693}{1257508226}a^{5}+\frac{9871659466}{628754113}a^{4}+\frac{95449156610}{628754113}a^{3}+\frac{2188563811}{628754113}a^{2}-\frac{70371636067}{1257508226}a-\frac{512693953}{96731402}$, $\frac{194301961}{628754113}a^{11}-\frac{22811813}{628754113}a^{10}-\frac{5488778574}{628754113}a^{9}+\frac{1213760645}{628754113}a^{8}+\frac{46902107283}{628754113}a^{7}-\frac{615693990}{48365701}a^{6}-\frac{156799562721}{628754113}a^{5}+\frac{8122460279}{628754113}a^{4}+\frac{200903468486}{628754113}a^{3}+\frac{7948625445}{628754113}a^{2}-\frac{77972480149}{628754113}a-\frac{280736624}{48365701}$, $\frac{792098587}{1257508226}a^{11}-\frac{218325479}{1257508226}a^{10}-\frac{11125091867}{628754113}a^{9}+\frac{4159848967}{628754113}a^{8}+\frac{187455914001}{1257508226}a^{7}-\frac{2232289596}{48365701}a^{6}-\frac{612208496829}{1257508226}a^{5}+\frac{49542096517}{628754113}a^{4}+\frac{379510057010}{628754113}a^{3}-\frac{7859729190}{628754113}a^{2}-\frac{285973968545}{1257508226}a-\frac{1019443783}{96731402}$, $\frac{406562851}{1257508226}a^{11}+\frac{32478351}{1257508226}a^{10}-\frac{11602208965}{1257508226}a^{9}+\frac{399232237}{1257508226}a^{8}+\frac{50770229866}{628754113}a^{7}-\frac{84904055}{96731402}a^{6}-\frac{353048999595}{1257508226}a^{5}-\frac{20330535377}{1257508226}a^{4}+\frac{477680614901}{1257508226}a^{3}+\frac{36459452899}{1257508226}a^{2}-\frac{97049832092}{628754113}a-\frac{222561908}{48365701}$, $\frac{32341637}{1257508226}a^{11}+\frac{81578332}{628754113}a^{10}-\frac{82488243}{96731402}a^{9}-\frac{4336686499}{1257508226}a^{8}+\frac{6318078344}{628754113}a^{7}+\frac{1298164997}{48365701}a^{6}-\frac{31060264321}{628754113}a^{5}-\frac{94644055449}{1257508226}a^{4}+\frac{9192451009}{96731402}a^{3}+\frac{81133665875}{1257508226}a^{2}-\frac{35560910248}{628754113}a-\frac{597654279}{96731402}$, $\frac{301591937}{628754113}a^{11}-\frac{341163269}{1257508226}a^{10}-\frac{8366917265}{628754113}a^{9}+\frac{5537236015}{628754113}a^{8}+\frac{68267360693}{628754113}a^{7}-\frac{6182575039}{96731402}a^{6}-\frac{419932196665}{1257508226}a^{5}+\frac{85930968756}{628754113}a^{4}+\frac{233640682904}{628754113}a^{3}-\frac{43984711913}{628754113}a^{2}-\frac{73068290684}{628754113}a-\frac{319534667}{96731402}$, $\frac{133620261}{1257508226}a^{11}-\frac{43578369}{1257508226}a^{10}-\frac{1880652577}{628754113}a^{9}+\frac{797454348}{628754113}a^{8}+\frac{31795483101}{1257508226}a^{7}-\frac{441545331}{48365701}a^{6}-\frac{104355299901}{1257508226}a^{5}+\frac{11302495095}{628754113}a^{4}+\frac{65026508220}{628754113}a^{3}-\frac{5400637205}{628754113}a^{2}-\frac{48845445693}{1257508226}a+\frac{124090031}{96731402}$, $\frac{116772977}{1257508226}a^{11}+\frac{34461931}{628754113}a^{10}-\frac{1703245151}{628754113}a^{9}-\frac{750273715}{628754113}a^{8}+\frac{31326376317}{1257508226}a^{7}+\frac{923363681}{96731402}a^{6}-\frac{58589492206}{628754113}a^{5}-\frac{19352800373}{628754113}a^{4}+\frac{87296481776}{628754113}a^{3}+\frac{18575679599}{628754113}a^{2}-\frac{81603255879}{1257508226}a-\frac{105845481}{48365701}$, $\frac{197748905}{628754113}a^{11}-\frac{65133936}{628754113}a^{10}-\frac{11157490147}{1257508226}a^{9}+\frac{4733187711}{1257508226}a^{8}+\frac{94827350531}{1257508226}a^{7}-\frac{2587746771}{96731402}a^{6}-\frac{157648974473}{628754113}a^{5}+\frac{61904687943}{1257508226}a^{4}+\frac{404477715263}{1257508226}a^{3}-\frac{13376590609}{1257508226}a^{2}-\frac{155191563739}{1257508226}a-\frac{406288991}{96731402}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 122189.376313 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 122189.376313 \cdot 1}{2\cdot\sqrt{683635509017782097}}\cr\approx \mathstrut & 0.302657258659 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.1.0.1}{1} }^{12}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |