Normalized defining polynomial
\( x^{12} - x^{11} - 202 x^{10} + 181 x^{9} + 13504 x^{8} - 9703 x^{7} - 357433 x^{6} + 184541 x^{5} + \cdots - 492149 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(65426054573967427251953125\) \(\medspace = 5^{9}\cdot 7^{10}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(141.68\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}7^{5/6}17^{3/4}\approx 141.681309097028$ | ||
Ramified primes: | \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{85}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(595=5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{595}(256,·)$, $\chi_{595}(1,·)$, $\chi_{595}(132,·)$, $\chi_{595}(293,·)$, $\chi_{595}(38,·)$, $\chi_{595}(424,·)$, $\chi_{595}(169,·)$, $\chi_{595}(47,·)$, $\chi_{595}(208,·)$, $\chi_{595}(86,·)$, $\chi_{595}(472,·)$, $\chi_{595}(254,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{27242209}a^{10}-\frac{9269042}{27242209}a^{9}+\frac{1480181}{27242209}a^{8}+\frac{6669483}{27242209}a^{7}+\frac{5361671}{27242209}a^{6}+\frac{4045628}{27242209}a^{5}-\frac{11051929}{27242209}a^{4}-\frac{7400550}{27242209}a^{3}-\frac{5048011}{27242209}a^{2}-\frac{3324577}{27242209}a-\frac{27665}{163127}$, $\frac{1}{39\!\cdots\!79}a^{11}-\frac{34\!\cdots\!68}{39\!\cdots\!79}a^{10}+\frac{13\!\cdots\!21}{39\!\cdots\!79}a^{9}+\frac{92\!\cdots\!23}{39\!\cdots\!79}a^{8}+\frac{11\!\cdots\!69}{39\!\cdots\!79}a^{7}+\frac{18\!\cdots\!18}{39\!\cdots\!79}a^{6}-\frac{10\!\cdots\!21}{39\!\cdots\!79}a^{5}+\frac{65\!\cdots\!69}{39\!\cdots\!79}a^{4}-\frac{11\!\cdots\!02}{39\!\cdots\!79}a^{3}-\frac{14\!\cdots\!73}{39\!\cdots\!79}a^{2}+\frac{61\!\cdots\!71}{39\!\cdots\!79}a-\frac{44\!\cdots\!20}{23\!\cdots\!37}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{93\!\cdots\!60}{67\!\cdots\!61}a^{11}-\frac{71\!\cdots\!99}{67\!\cdots\!61}a^{10}-\frac{18\!\cdots\!20}{67\!\cdots\!61}a^{9}+\frac{12\!\cdots\!70}{67\!\cdots\!61}a^{8}+\frac{12\!\cdots\!20}{67\!\cdots\!61}a^{7}-\frac{61\!\cdots\!45}{67\!\cdots\!61}a^{6}-\frac{33\!\cdots\!20}{67\!\cdots\!61}a^{5}+\frac{98\!\cdots\!70}{67\!\cdots\!61}a^{4}+\frac{34\!\cdots\!40}{67\!\cdots\!61}a^{3}-\frac{59\!\cdots\!15}{67\!\cdots\!61}a^{2}-\frac{99\!\cdots\!00}{67\!\cdots\!61}a+\frac{14\!\cdots\!14}{40\!\cdots\!83}$, $\frac{68\!\cdots\!10}{67\!\cdots\!61}a^{11}-\frac{41\!\cdots\!71}{67\!\cdots\!61}a^{10}-\frac{13\!\cdots\!20}{67\!\cdots\!61}a^{9}+\frac{69\!\cdots\!60}{67\!\cdots\!61}a^{8}+\frac{92\!\cdots\!80}{67\!\cdots\!61}a^{7}-\frac{30\!\cdots\!45}{67\!\cdots\!61}a^{6}-\frac{14\!\cdots\!13}{40\!\cdots\!83}a^{5}+\frac{34\!\cdots\!30}{67\!\cdots\!61}a^{4}+\frac{25\!\cdots\!65}{67\!\cdots\!61}a^{3}-\frac{42\!\cdots\!35}{67\!\cdots\!61}a^{2}-\frac{81\!\cdots\!45}{67\!\cdots\!61}a+\frac{57\!\cdots\!53}{40\!\cdots\!83}$, $\frac{40\!\cdots\!13}{39\!\cdots\!79}a^{11}-\frac{29\!\cdots\!28}{39\!\cdots\!79}a^{10}-\frac{80\!\cdots\!17}{39\!\cdots\!79}a^{9}+\frac{51\!\cdots\!28}{39\!\cdots\!79}a^{8}+\frac{54\!\cdots\!44}{39\!\cdots\!79}a^{7}-\frac{24\!\cdots\!43}{39\!\cdots\!79}a^{6}-\frac{14\!\cdots\!62}{39\!\cdots\!79}a^{5}+\frac{32\!\cdots\!55}{39\!\cdots\!79}a^{4}+\frac{15\!\cdots\!28}{39\!\cdots\!79}a^{3}-\frac{89\!\cdots\!25}{39\!\cdots\!79}a^{2}-\frac{47\!\cdots\!11}{39\!\cdots\!79}a+\frac{27\!\cdots\!47}{23\!\cdots\!37}$, $\frac{17\!\cdots\!68}{39\!\cdots\!79}a^{11}-\frac{19\!\cdots\!47}{39\!\cdots\!79}a^{10}-\frac{34\!\cdots\!06}{39\!\cdots\!79}a^{9}+\frac{33\!\cdots\!86}{39\!\cdots\!79}a^{8}+\frac{22\!\cdots\!67}{39\!\cdots\!79}a^{7}-\frac{16\!\cdots\!44}{39\!\cdots\!79}a^{6}-\frac{58\!\cdots\!08}{39\!\cdots\!79}a^{5}+\frac{23\!\cdots\!04}{39\!\cdots\!79}a^{4}+\frac{58\!\cdots\!17}{39\!\cdots\!79}a^{3}-\frac{11\!\cdots\!86}{39\!\cdots\!79}a^{2}-\frac{17\!\cdots\!75}{39\!\cdots\!79}a+\frac{28\!\cdots\!67}{23\!\cdots\!37}$, $\frac{10\!\cdots\!74}{14\!\cdots\!31}a^{11}-\frac{87\!\cdots\!26}{14\!\cdots\!31}a^{10}-\frac{21\!\cdots\!54}{14\!\cdots\!31}a^{9}+\frac{15\!\cdots\!34}{14\!\cdots\!31}a^{8}+\frac{14\!\cdots\!55}{14\!\cdots\!31}a^{7}-\frac{73\!\cdots\!94}{14\!\cdots\!31}a^{6}-\frac{36\!\cdots\!03}{14\!\cdots\!31}a^{5}+\frac{10\!\cdots\!40}{14\!\cdots\!31}a^{4}+\frac{38\!\cdots\!58}{14\!\cdots\!31}a^{3}-\frac{42\!\cdots\!54}{14\!\cdots\!31}a^{2}-\frac{11\!\cdots\!97}{14\!\cdots\!31}a+\frac{18\!\cdots\!08}{14\!\cdots\!31}$, $\frac{95\!\cdots\!22}{39\!\cdots\!79}a^{11}-\frac{86\!\cdots\!12}{39\!\cdots\!79}a^{10}-\frac{19\!\cdots\!39}{39\!\cdots\!79}a^{9}+\frac{15\!\cdots\!68}{39\!\cdots\!79}a^{8}+\frac{12\!\cdots\!36}{39\!\cdots\!79}a^{7}-\frac{80\!\cdots\!75}{39\!\cdots\!79}a^{6}-\frac{33\!\cdots\!40}{39\!\cdots\!79}a^{5}+\frac{13\!\cdots\!55}{39\!\cdots\!79}a^{4}+\frac{34\!\cdots\!24}{39\!\cdots\!79}a^{3}-\frac{76\!\cdots\!61}{39\!\cdots\!79}a^{2}-\frac{10\!\cdots\!16}{39\!\cdots\!79}a+\frac{16\!\cdots\!99}{23\!\cdots\!37}$, $\frac{85\!\cdots\!40}{39\!\cdots\!79}a^{11}-\frac{81\!\cdots\!07}{39\!\cdots\!79}a^{10}-\frac{17\!\cdots\!82}{39\!\cdots\!79}a^{9}+\frac{14\!\cdots\!11}{39\!\cdots\!79}a^{8}+\frac{11\!\cdots\!46}{39\!\cdots\!79}a^{7}-\frac{74\!\cdots\!22}{39\!\cdots\!79}a^{6}-\frac{29\!\cdots\!21}{39\!\cdots\!79}a^{5}+\frac{12\!\cdots\!26}{39\!\cdots\!79}a^{4}+\frac{30\!\cdots\!34}{39\!\cdots\!79}a^{3}-\frac{70\!\cdots\!05}{39\!\cdots\!79}a^{2}-\frac{93\!\cdots\!75}{39\!\cdots\!79}a+\frac{14\!\cdots\!65}{23\!\cdots\!37}$, $\frac{19\!\cdots\!92}{39\!\cdots\!79}a^{11}-\frac{24\!\cdots\!54}{39\!\cdots\!79}a^{10}-\frac{39\!\cdots\!66}{39\!\cdots\!79}a^{9}+\frac{44\!\cdots\!23}{39\!\cdots\!79}a^{8}+\frac{26\!\cdots\!78}{39\!\cdots\!79}a^{7}-\frac{22\!\cdots\!59}{39\!\cdots\!79}a^{6}-\frac{67\!\cdots\!55}{39\!\cdots\!79}a^{5}+\frac{38\!\cdots\!20}{39\!\cdots\!79}a^{4}+\frac{67\!\cdots\!15}{39\!\cdots\!79}a^{3}-\frac{20\!\cdots\!31}{39\!\cdots\!79}a^{2}-\frac{20\!\cdots\!61}{39\!\cdots\!79}a+\frac{33\!\cdots\!19}{23\!\cdots\!37}$, $\frac{19\!\cdots\!85}{39\!\cdots\!79}a^{11}+\frac{29\!\cdots\!89}{39\!\cdots\!79}a^{10}-\frac{41\!\cdots\!49}{39\!\cdots\!79}a^{9}-\frac{61\!\cdots\!72}{39\!\cdots\!79}a^{8}+\frac{28\!\cdots\!56}{39\!\cdots\!79}a^{7}+\frac{44\!\cdots\!69}{39\!\cdots\!79}a^{6}-\frac{75\!\cdots\!96}{39\!\cdots\!79}a^{5}-\frac{12\!\cdots\!16}{39\!\cdots\!79}a^{4}+\frac{71\!\cdots\!33}{39\!\cdots\!79}a^{3}+\frac{11\!\cdots\!69}{39\!\cdots\!79}a^{2}-\frac{70\!\cdots\!69}{39\!\cdots\!79}a+\frac{41\!\cdots\!40}{23\!\cdots\!37}$, $\frac{33\!\cdots\!44}{39\!\cdots\!79}a^{11}-\frac{76\!\cdots\!01}{39\!\cdots\!79}a^{10}-\frac{62\!\cdots\!55}{39\!\cdots\!79}a^{9}+\frac{12\!\cdots\!92}{39\!\cdots\!79}a^{8}+\frac{36\!\cdots\!89}{39\!\cdots\!79}a^{7}-\frac{56\!\cdots\!51}{39\!\cdots\!79}a^{6}-\frac{76\!\cdots\!71}{39\!\cdots\!79}a^{5}+\frac{59\!\cdots\!32}{39\!\cdots\!79}a^{4}+\frac{48\!\cdots\!08}{39\!\cdots\!79}a^{3}+\frac{22\!\cdots\!68}{39\!\cdots\!79}a^{2}+\frac{74\!\cdots\!77}{39\!\cdots\!79}a-\frac{89\!\cdots\!17}{23\!\cdots\!37}$, $\frac{11\!\cdots\!97}{39\!\cdots\!79}a^{11}-\frac{71\!\cdots\!48}{39\!\cdots\!79}a^{10}-\frac{22\!\cdots\!53}{39\!\cdots\!79}a^{9}+\frac{13\!\cdots\!94}{39\!\cdots\!79}a^{8}+\frac{14\!\cdots\!34}{39\!\cdots\!79}a^{7}-\frac{77\!\cdots\!24}{39\!\cdots\!79}a^{6}-\frac{34\!\cdots\!64}{39\!\cdots\!79}a^{5}+\frac{15\!\cdots\!06}{39\!\cdots\!79}a^{4}+\frac{25\!\cdots\!91}{39\!\cdots\!79}a^{3}-\frac{94\!\cdots\!26}{39\!\cdots\!79}a^{2}+\frac{32\!\cdots\!85}{39\!\cdots\!79}a-\frac{15\!\cdots\!18}{23\!\cdots\!37}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 162126335.029 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 162126335.029 \cdot 4}{2\cdot\sqrt{65426054573967427251953125}}\cr\approx \mathstrut & 0.164198105946 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{85}) \), \(\Q(\zeta_{7})^+\), 4.4.30092125.1, 6.6.1474514125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.9.3 | $x^{12} + 75 x^{4} - 375$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.6.5.5 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
7.6.5.5 | $x^{6} + 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |