Properties

Label 12.12.6525845768...0000.1
Degree $12$
Signature $[12, 0]$
Discriminant $2^{12}\cdot 5^{9}\cdot 13^{8}$
Root discriminant $36.97$
Ramified primes $2, 5, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-79, -54, 1290, -2040, -219, 2010, -511, -660, 206, 90, -25, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 25*x^10 + 90*x^9 + 206*x^8 - 660*x^7 - 511*x^6 + 2010*x^5 - 219*x^4 - 2040*x^3 + 1290*x^2 - 54*x - 79)
 
gp: K = bnfinit(x^12 - 4*x^11 - 25*x^10 + 90*x^9 + 206*x^8 - 660*x^7 - 511*x^6 + 2010*x^5 - 219*x^4 - 2040*x^3 + 1290*x^2 - 54*x - 79, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} - 25 x^{10} + 90 x^{9} + 206 x^{8} - 660 x^{7} - 511 x^{6} + 2010 x^{5} - 219 x^{4} - 2040 x^{3} + 1290 x^{2} - 54 x - 79 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6525845768000000000=2^{12}\cdot 5^{9}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(260=2^{2}\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(3,·)$, $\chi_{260}(209,·)$, $\chi_{260}(9,·)$, $\chi_{260}(107,·)$, $\chi_{260}(29,·)$, $\chi_{260}(81,·)$, $\chi_{260}(243,·)$, $\chi_{260}(183,·)$, $\chi_{260}(87,·)$, $\chi_{260}(27,·)$, $\chi_{260}(61,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4441} a^{10} - \frac{1139}{4441} a^{9} + \frac{1710}{4441} a^{8} + \frac{1412}{4441} a^{7} + \frac{556}{4441} a^{6} + \frac{1781}{4441} a^{5} - \frac{1818}{4441} a^{4} - \frac{746}{4441} a^{3} + \frac{95}{4441} a^{2} - \frac{1248}{4441} a + \frac{338}{4441}$, $\frac{1}{85351579} a^{11} - \frac{275}{85351579} a^{10} - \frac{31425441}{85351579} a^{9} + \frac{11906320}{85351579} a^{8} + \frac{8694727}{85351579} a^{7} + \frac{23828502}{85351579} a^{6} + \frac{12301950}{85351579} a^{5} - \frac{30522377}{85351579} a^{4} - \frac{11555986}{85351579} a^{3} + \frac{933504}{85351579} a^{2} - \frac{2112687}{85351579} a + \frac{25277098}{85351579}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 344057.048857 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.169.1, \(\Q(\zeta_{20})^+\), 6.6.3570125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$13$13.12.8.1$x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$