Normalized defining polynomial
\( x^{12} - 714x^{10} + 197064x^{8} - 26655048x^{6} + 1835265600x^{4} - 59903069184x^{2} + 718836830208 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(6401594233356076787154812928\) \(\medspace = 2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(207.58\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}7^{5/6}17^{3/4}\approx 207.58247157811073$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2856=2^{3}\cdot 3\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2856}(1,·)$, $\chi_{2856}(965,·)$, $\chi_{2856}(1781,·)$, $\chi_{2856}(2209,·)$, $\chi_{2856}(1801,·)$, $\chi_{2856}(2189,·)$, $\chi_{2856}(1517,·)$, $\chi_{2856}(2041,·)$, $\chi_{2856}(1109,·)$, $\chi_{2856}(1633,·)$, $\chi_{2856}(169,·)$, $\chi_{2856}(293,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6}a^{2}$, $\frac{1}{6}a^{3}$, $\frac{1}{612}a^{4}$, $\frac{1}{612}a^{5}$, $\frac{1}{25704}a^{6}$, $\frac{1}{51408}a^{7}-\frac{1}{1224}a^{5}-\frac{1}{2}a$, $\frac{1}{10487232}a^{8}+\frac{1}{102816}a^{6}-\frac{1}{1224}a^{4}-\frac{1}{24}a^{2}$, $\frac{1}{20974464}a^{9}+\frac{1}{205632}a^{7}-\frac{1}{2448}a^{5}+\frac{1}{16}a^{3}-\frac{1}{2}a$, $\frac{1}{3272016384}a^{10}-\frac{1}{77905152}a^{8}-\frac{5}{891072}a^{6}-\frac{61}{127296}a^{4}-\frac{5}{312}a^{2}-\frac{1}{13}$, $\frac{1}{6544032768}a^{11}-\frac{1}{155810304}a^{9}-\frac{5}{1782144}a^{7}-\frac{61}{254592}a^{5}-\frac{5}{624}a^{3}-\frac{1}{26}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{1}{409002048}a^{10}-\frac{61}{45444672}a^{8}+\frac{49}{190944}a^{6}-\frac{167}{7956}a^{4}+\frac{233}{312}a^{2}-\frac{151}{13}$, $\frac{5}{1090672128}a^{10}-\frac{1457}{545336064}a^{8}+\frac{71}{127296}a^{6}-\frac{2177}{42432}a^{4}+\frac{209}{104}a^{2}-\frac{327}{13}$, $\frac{23}{3272016384}a^{10}-\frac{695}{181778688}a^{8}+\frac{71}{99008}a^{6}-\frac{419}{7488}a^{4}+\frac{87}{52}a^{2}-\frac{153}{13}$, $\frac{1}{3272016384}a^{10}-\frac{215}{545336064}a^{8}+\frac{401}{2673216}a^{6}-\frac{991}{42432}a^{4}+\frac{463}{312}a^{2}-\frac{352}{13}$, $\frac{1}{1636008192}a^{10}-\frac{5}{16039296}a^{8}+\frac{25}{668304}a^{6}+\frac{199}{63648}a^{4}-\frac{77}{104}a^{2}+\frac{336}{13}$, $\frac{59}{6544032768}a^{11}-\frac{1}{25562628}a^{10}-\frac{839}{155810304}a^{9}+\frac{5}{250614}a^{8}+\frac{895}{763776}a^{7}-\frac{139}{41769}a^{6}-\frac{1735}{14976}a^{5}+\frac{8}{39}a^{4}+\frac{1601}{312}a^{3}-\frac{128}{39}a^{2}-\frac{2009}{26}a-\frac{67}{13}$, $\frac{31}{6544032768}a^{11}-\frac{1}{25562628}a^{10}-\frac{991}{363557376}a^{9}+\frac{5}{250614}a^{8}+\frac{145}{254592}a^{7}-\frac{139}{41769}a^{6}-\frac{827}{14976}a^{5}+\frac{8}{39}a^{4}+\frac{271}{104}a^{3}-\frac{128}{39}a^{2}-\frac{1253}{26}a-\frac{613}{13}$, $\frac{737}{3272016384}a^{11}-\frac{8773}{3272016384}a^{10}-\frac{3331}{25968384}a^{9}+\frac{834079}{545336064}a^{8}+\frac{22991}{891072}a^{7}-\frac{48439}{157248}a^{6}-\frac{287693}{127296}a^{5}+\frac{202217}{7488}a^{4}+\frac{26605}{312}a^{3}-\frac{158995}{156}a^{2}-\frac{14517}{13}a+\frac{173457}{13}$, $\frac{83}{818004096}a^{11}+\frac{6073}{3272016384}a^{10}-\frac{15}{210392}a^{9}-\frac{683983}{545336064}a^{8}+\frac{25577}{1336608}a^{7}+\frac{850937}{2673216}a^{6}-\frac{78071}{31824}a^{5}-\frac{4785461}{127296}a^{4}+\frac{15597}{104}a^{3}+\frac{632063}{312}a^{2}-\frac{90793}{26}a-\frac{498162}{13}$, $\frac{4909}{6544032768}a^{11}+\frac{14831}{1636008192}a^{10}-\frac{17177}{40395264}a^{9}-\frac{200393}{38952576}a^{8}+\frac{455881}{5346432}a^{7}+\frac{172517}{167076}a^{6}-\frac{1897097}{254592}a^{5}-\frac{338119}{3744}a^{4}+\frac{175057}{624}a^{3}+\frac{1061561}{312}a^{2}-\frac{95311}{26}a-\frac{578249}{13}$, $\frac{415}{818004096}a^{11}-\frac{2381}{363557376}a^{10}-\frac{6319}{22722336}a^{9}+\frac{93671}{25968384}a^{8}+\frac{71465}{1336608}a^{7}-\frac{622103}{891072}a^{6}-\frac{142445}{31824}a^{5}+\frac{7498705}{127296}a^{4}+\frac{50941}{312}a^{3}-\frac{224805}{104}a^{2}-\frac{27179}{13}a+\frac{361106}{13}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1441606350.4875915 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1441606350.4875915 \cdot 16}{2\cdot\sqrt{6401594233356076787154812928}}\cr\approx \mathstrut & 0.590408430674939 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.138664512.1, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.1.0.1}{1} }^{12}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.9.1 | $x^{6} + 44 x^{4} + 2 x^{3} + 589 x^{2} - 82 x + 2367$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
2.6.9.1 | $x^{6} + 44 x^{4} + 2 x^{3} + 589 x^{2} - 82 x + 2367$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(7\) | 7.12.10.5 | $x^{12} - 154 x^{6} - 1421$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |