Properties

Label 12.12.593...433.1
Degree $12$
Signature $[12, 0]$
Discriminant $5.934\times 10^{25}$
Root discriminant \(140.53\)
Ramified primes $7,11,17$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637)
 
gp: K = bnfinit(y^12 - y^11 - 338*y^10 + 334*y^9 + 43730*y^8 - 42394*y^7 - 2726655*y^6 + 2288070*y^5 + 83876760*y^4 - 44603207*y^3 - 1136572641*y^2 + 122837871*y + 4028583637, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637)
 

\( x^{12} - x^{11} - 338 x^{10} + 334 x^{9} + 43730 x^{8} - 42394 x^{7} - 2726655 x^{6} + 2288070 x^{5} + \cdots + 4028583637 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(59343998293561502407627433\) \(\medspace = 7^{10}\cdot 11^{6}\cdot 17^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(140.53\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}11^{1/2}17^{3/4}\approx 140.53399760248536$
Ramified primes:   \(7\), \(11\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1309=7\cdot 11\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{1309}(1,·)$, $\chi_{1309}(67,·)$, $\chi_{1309}(769,·)$, $\chi_{1309}(1002,·)$, $\chi_{1309}(395,·)$, $\chi_{1309}(846,·)$, $\chi_{1309}(208,·)$, $\chi_{1309}(562,·)$, $\chi_{1309}(375,·)$, $\chi_{1309}(472,·)$, $\chi_{1309}(285,·)$, $\chi_{1309}(254,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{4472}a^{9}-\frac{205}{1118}a^{8}+\frac{293}{2236}a^{7}+\frac{905}{4472}a^{6}+\frac{2131}{4472}a^{5}-\frac{2177}{4472}a^{4}+\frac{1901}{4472}a^{3}+\frac{1033}{2236}a^{2}-\frac{1863}{4472}a-\frac{1}{344}$, $\frac{1}{340529384}a^{10}-\frac{17081}{170264692}a^{9}+\frac{33472529}{170264692}a^{8}+\frac{74390145}{340529384}a^{7}+\frac{66033757}{340529384}a^{6}+\frac{163386149}{340529384}a^{5}-\frac{44766789}{340529384}a^{4}-\frac{25245413}{85132346}a^{3}-\frac{103750147}{340529384}a^{2}+\frac{161537637}{340529384}a+\frac{2601057}{13097284}$, $\frac{1}{11\!\cdots\!44}a^{11}+\frac{868540635078691}{56\!\cdots\!72}a^{10}+\frac{18\!\cdots\!43}{11\!\cdots\!44}a^{9}+\frac{14\!\cdots\!21}{11\!\cdots\!44}a^{8}+\frac{17\!\cdots\!79}{11\!\cdots\!44}a^{7}-\frac{14\!\cdots\!97}{56\!\cdots\!72}a^{6}-\frac{28\!\cdots\!57}{56\!\cdots\!72}a^{5}-\frac{63\!\cdots\!41}{11\!\cdots\!44}a^{4}+\frac{81\!\cdots\!25}{43\!\cdots\!44}a^{3}+\frac{96\!\cdots\!63}{11\!\cdots\!44}a^{2}-\frac{13\!\cdots\!09}{11\!\cdots\!44}a-\frac{42\!\cdots\!69}{87\!\cdots\!88}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{84\!\cdots\!35}{40\!\cdots\!24}a^{11}+\frac{68\!\cdots\!87}{50\!\cdots\!53}a^{10}-\frac{24\!\cdots\!47}{40\!\cdots\!24}a^{9}-\frac{15\!\cdots\!25}{40\!\cdots\!24}a^{8}+\frac{26\!\cdots\!67}{40\!\cdots\!24}a^{7}+\frac{19\!\cdots\!51}{50\!\cdots\!53}a^{6}-\frac{15\!\cdots\!94}{50\!\cdots\!53}a^{5}-\frac{52\!\cdots\!13}{31\!\cdots\!48}a^{4}+\frac{11\!\cdots\!39}{20\!\cdots\!12}a^{3}+\frac{12\!\cdots\!63}{40\!\cdots\!24}a^{2}-\frac{81\!\cdots\!61}{40\!\cdots\!24}a-\frac{36\!\cdots\!47}{31\!\cdots\!48}$, $\frac{84\!\cdots\!35}{40\!\cdots\!24}a^{11}+\frac{68\!\cdots\!87}{50\!\cdots\!53}a^{10}-\frac{24\!\cdots\!47}{40\!\cdots\!24}a^{9}-\frac{15\!\cdots\!25}{40\!\cdots\!24}a^{8}+\frac{26\!\cdots\!67}{40\!\cdots\!24}a^{7}+\frac{19\!\cdots\!51}{50\!\cdots\!53}a^{6}-\frac{15\!\cdots\!94}{50\!\cdots\!53}a^{5}-\frac{52\!\cdots\!13}{31\!\cdots\!48}a^{4}+\frac{11\!\cdots\!39}{20\!\cdots\!12}a^{3}+\frac{12\!\cdots\!63}{40\!\cdots\!24}a^{2}-\frac{81\!\cdots\!61}{40\!\cdots\!24}a-\frac{36\!\cdots\!95}{31\!\cdots\!48}$, $\frac{98\!\cdots\!97}{28\!\cdots\!86}a^{11}+\frac{27\!\cdots\!71}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!91}{56\!\cdots\!72}a^{9}-\frac{38\!\cdots\!43}{56\!\cdots\!72}a^{8}+\frac{11\!\cdots\!87}{11\!\cdots\!44}a^{7}+\frac{77\!\cdots\!99}{11\!\cdots\!44}a^{6}-\frac{54\!\cdots\!97}{11\!\cdots\!44}a^{5}-\frac{34\!\cdots\!43}{11\!\cdots\!44}a^{4}+\frac{24\!\cdots\!87}{28\!\cdots\!86}a^{3}+\frac{61\!\cdots\!23}{11\!\cdots\!44}a^{2}-\frac{33\!\cdots\!81}{11\!\cdots\!44}a-\frac{90\!\cdots\!63}{43\!\cdots\!44}$, $\frac{19\!\cdots\!25}{11\!\cdots\!44}a^{11}+\frac{15\!\cdots\!73}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!41}{11\!\cdots\!44}a^{9}-\frac{42\!\cdots\!49}{11\!\cdots\!44}a^{8}+\frac{29\!\cdots\!53}{56\!\cdots\!72}a^{7}+\frac{41\!\cdots\!47}{11\!\cdots\!44}a^{6}-\frac{26\!\cdots\!33}{11\!\cdots\!44}a^{5}-\frac{88\!\cdots\!03}{56\!\cdots\!72}a^{4}+\frac{58\!\cdots\!88}{14\!\cdots\!93}a^{3}+\frac{15\!\cdots\!79}{56\!\cdots\!72}a^{2}-\frac{38\!\cdots\!13}{28\!\cdots\!86}a-\frac{88\!\cdots\!77}{87\!\cdots\!88}$, $\frac{35\!\cdots\!57}{87\!\cdots\!88}a^{11}+\frac{12\!\cdots\!37}{56\!\cdots\!72}a^{10}-\frac{33\!\cdots\!61}{28\!\cdots\!86}a^{9}-\frac{71\!\cdots\!63}{11\!\cdots\!44}a^{8}+\frac{14\!\cdots\!37}{11\!\cdots\!44}a^{7}+\frac{74\!\cdots\!11}{11\!\cdots\!44}a^{6}-\frac{69\!\cdots\!75}{11\!\cdots\!44}a^{5}-\frac{16\!\cdots\!35}{56\!\cdots\!72}a^{4}+\frac{10\!\cdots\!71}{87\!\cdots\!88}a^{3}+\frac{48\!\cdots\!93}{87\!\cdots\!88}a^{2}-\frac{12\!\cdots\!77}{28\!\cdots\!86}a-\frac{95\!\cdots\!53}{43\!\cdots\!44}$, $\frac{59\!\cdots\!45}{87\!\cdots\!88}a^{11}+\frac{45\!\cdots\!61}{11\!\cdots\!44}a^{10}-\frac{23\!\cdots\!11}{11\!\cdots\!44}a^{9}-\frac{13\!\cdots\!25}{11\!\cdots\!44}a^{8}+\frac{12\!\cdots\!51}{56\!\cdots\!72}a^{7}+\frac{13\!\cdots\!37}{11\!\cdots\!44}a^{6}-\frac{91\!\cdots\!71}{87\!\cdots\!88}a^{5}-\frac{12\!\cdots\!81}{21\!\cdots\!22}a^{4}+\frac{11\!\cdots\!61}{56\!\cdots\!72}a^{3}+\frac{59\!\cdots\!07}{56\!\cdots\!72}a^{2}-\frac{41\!\cdots\!27}{56\!\cdots\!72}a-\frac{35\!\cdots\!91}{87\!\cdots\!88}$, $\frac{13\!\cdots\!41}{11\!\cdots\!44}a^{11}+\frac{39\!\cdots\!85}{56\!\cdots\!72}a^{10}-\frac{38\!\cdots\!17}{11\!\cdots\!44}a^{9}-\frac{22\!\cdots\!99}{11\!\cdots\!44}a^{8}+\frac{41\!\cdots\!19}{11\!\cdots\!44}a^{7}+\frac{11\!\cdots\!13}{56\!\cdots\!72}a^{6}-\frac{96\!\cdots\!59}{56\!\cdots\!72}a^{5}-\frac{10\!\cdots\!85}{11\!\cdots\!44}a^{4}+\frac{18\!\cdots\!73}{56\!\cdots\!72}a^{3}+\frac{19\!\cdots\!23}{11\!\cdots\!44}a^{2}-\frac{13\!\cdots\!97}{11\!\cdots\!44}a-\frac{58\!\cdots\!97}{87\!\cdots\!88}$, $\frac{12\!\cdots\!15}{56\!\cdots\!72}a^{11}-\frac{18\!\cdots\!11}{11\!\cdots\!44}a^{10}-\frac{46\!\cdots\!55}{56\!\cdots\!72}a^{9}+\frac{39\!\cdots\!09}{14\!\cdots\!93}a^{8}+\frac{13\!\cdots\!75}{11\!\cdots\!44}a^{7}-\frac{48\!\cdots\!41}{11\!\cdots\!44}a^{6}-\frac{76\!\cdots\!53}{11\!\cdots\!44}a^{5}-\frac{91\!\cdots\!49}{87\!\cdots\!88}a^{4}+\frac{85\!\cdots\!91}{56\!\cdots\!72}a^{3}+\frac{47\!\cdots\!63}{11\!\cdots\!44}a^{2}-\frac{67\!\cdots\!47}{11\!\cdots\!44}a-\frac{82\!\cdots\!07}{43\!\cdots\!44}$, $\frac{41\!\cdots\!13}{11\!\cdots\!44}a^{11}-\frac{33\!\cdots\!21}{11\!\cdots\!44}a^{10}-\frac{15\!\cdots\!70}{14\!\cdots\!93}a^{9}+\frac{99\!\cdots\!11}{11\!\cdots\!44}a^{8}+\frac{67\!\cdots\!59}{56\!\cdots\!72}a^{7}-\frac{54\!\cdots\!81}{56\!\cdots\!72}a^{6}-\frac{15\!\cdots\!99}{28\!\cdots\!86}a^{5}+\frac{51\!\cdots\!31}{11\!\cdots\!44}a^{4}+\frac{92\!\cdots\!49}{87\!\cdots\!88}a^{3}-\frac{47\!\cdots\!93}{56\!\cdots\!72}a^{2}-\frac{59\!\cdots\!73}{11\!\cdots\!44}a+\frac{15\!\cdots\!27}{43\!\cdots\!44}$, $\frac{29\!\cdots\!27}{87\!\cdots\!88}a^{11}+\frac{24\!\cdots\!01}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!47}{56\!\cdots\!72}a^{9}-\frac{70\!\cdots\!27}{11\!\cdots\!44}a^{8}+\frac{60\!\cdots\!81}{56\!\cdots\!72}a^{7}+\frac{18\!\cdots\!05}{28\!\cdots\!86}a^{6}-\frac{28\!\cdots\!67}{56\!\cdots\!72}a^{5}-\frac{33\!\cdots\!81}{11\!\cdots\!44}a^{4}+\frac{10\!\cdots\!37}{11\!\cdots\!44}a^{3}+\frac{30\!\cdots\!35}{56\!\cdots\!72}a^{2}-\frac{38\!\cdots\!77}{11\!\cdots\!44}a-\frac{46\!\cdots\!85}{21\!\cdots\!22}$, $\frac{16\!\cdots\!17}{28\!\cdots\!86}a^{11}+\frac{81\!\cdots\!31}{11\!\cdots\!44}a^{10}-\frac{25\!\cdots\!27}{14\!\cdots\!93}a^{9}-\frac{11\!\cdots\!63}{56\!\cdots\!72}a^{8}+\frac{23\!\cdots\!07}{11\!\cdots\!44}a^{7}+\frac{21\!\cdots\!05}{11\!\cdots\!44}a^{6}-\frac{14\!\cdots\!27}{11\!\cdots\!44}a^{5}-\frac{82\!\cdots\!89}{11\!\cdots\!44}a^{4}+\frac{20\!\cdots\!75}{56\!\cdots\!72}a^{3}+\frac{74\!\cdots\!39}{87\!\cdots\!88}a^{2}-\frac{43\!\cdots\!27}{11\!\cdots\!44}a+\frac{26\!\cdots\!12}{10\!\cdots\!61}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1377319421.77 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1377319421.77 \cdot 2}{2\cdot\sqrt{59343998293561502407627433}}\cr\approx \mathstrut & 0.732328975366 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 - 338*x^10 + 334*x^9 + 43730*x^8 - 42394*x^7 - 2726655*x^6 + 2288070*x^5 + 83876760*x^4 - 44603207*x^3 - 1136572641*x^2 + 122837871*x + 4028583637);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.29129177.2, 6.6.11796113.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{4}$ ${\href{/padicField/3.12.0.1}{12} }$ ${\href{/padicField/5.12.0.1}{12} }$ R R ${\href{/padicField/13.1.0.1}{1} }^{12}$ R ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.4.0.1}{4} }^{3}$ ${\href{/padicField/43.1.0.1}{1} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.12.10.5$x^{12} - 154 x^{6} - 1421$$6$$2$$10$$C_{12}$$[\ ]_{6}^{2}$
\(11\) Copy content Toggle raw display 11.12.6.2$x^{12} + 363 x^{8} - 5324 x^{6} + 87846 x^{4} - 1127357 x^{2} + 3543122$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$