Normalized defining polynomial
\( x^{12} - x^{11} - 338 x^{10} + 334 x^{9} + 43730 x^{8} - 42394 x^{7} - 2726655 x^{6} + 2288070 x^{5} + \cdots + 4028583637 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(59343998293561502407627433\) \(\medspace = 7^{10}\cdot 11^{6}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(140.53\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{5/6}11^{1/2}17^{3/4}\approx 140.53399760248536$ | ||
Ramified primes: | \(7\), \(11\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1309=7\cdot 11\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1309}(1,·)$, $\chi_{1309}(67,·)$, $\chi_{1309}(769,·)$, $\chi_{1309}(1002,·)$, $\chi_{1309}(395,·)$, $\chi_{1309}(846,·)$, $\chi_{1309}(208,·)$, $\chi_{1309}(562,·)$, $\chi_{1309}(375,·)$, $\chi_{1309}(472,·)$, $\chi_{1309}(285,·)$, $\chi_{1309}(254,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{4472}a^{9}-\frac{205}{1118}a^{8}+\frac{293}{2236}a^{7}+\frac{905}{4472}a^{6}+\frac{2131}{4472}a^{5}-\frac{2177}{4472}a^{4}+\frac{1901}{4472}a^{3}+\frac{1033}{2236}a^{2}-\frac{1863}{4472}a-\frac{1}{344}$, $\frac{1}{340529384}a^{10}-\frac{17081}{170264692}a^{9}+\frac{33472529}{170264692}a^{8}+\frac{74390145}{340529384}a^{7}+\frac{66033757}{340529384}a^{6}+\frac{163386149}{340529384}a^{5}-\frac{44766789}{340529384}a^{4}-\frac{25245413}{85132346}a^{3}-\frac{103750147}{340529384}a^{2}+\frac{161537637}{340529384}a+\frac{2601057}{13097284}$, $\frac{1}{11\!\cdots\!44}a^{11}+\frac{868540635078691}{56\!\cdots\!72}a^{10}+\frac{18\!\cdots\!43}{11\!\cdots\!44}a^{9}+\frac{14\!\cdots\!21}{11\!\cdots\!44}a^{8}+\frac{17\!\cdots\!79}{11\!\cdots\!44}a^{7}-\frac{14\!\cdots\!97}{56\!\cdots\!72}a^{6}-\frac{28\!\cdots\!57}{56\!\cdots\!72}a^{5}-\frac{63\!\cdots\!41}{11\!\cdots\!44}a^{4}+\frac{81\!\cdots\!25}{43\!\cdots\!44}a^{3}+\frac{96\!\cdots\!63}{11\!\cdots\!44}a^{2}-\frac{13\!\cdots\!09}{11\!\cdots\!44}a-\frac{42\!\cdots\!69}{87\!\cdots\!88}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{84\!\cdots\!35}{40\!\cdots\!24}a^{11}+\frac{68\!\cdots\!87}{50\!\cdots\!53}a^{10}-\frac{24\!\cdots\!47}{40\!\cdots\!24}a^{9}-\frac{15\!\cdots\!25}{40\!\cdots\!24}a^{8}+\frac{26\!\cdots\!67}{40\!\cdots\!24}a^{7}+\frac{19\!\cdots\!51}{50\!\cdots\!53}a^{6}-\frac{15\!\cdots\!94}{50\!\cdots\!53}a^{5}-\frac{52\!\cdots\!13}{31\!\cdots\!48}a^{4}+\frac{11\!\cdots\!39}{20\!\cdots\!12}a^{3}+\frac{12\!\cdots\!63}{40\!\cdots\!24}a^{2}-\frac{81\!\cdots\!61}{40\!\cdots\!24}a-\frac{36\!\cdots\!47}{31\!\cdots\!48}$, $\frac{84\!\cdots\!35}{40\!\cdots\!24}a^{11}+\frac{68\!\cdots\!87}{50\!\cdots\!53}a^{10}-\frac{24\!\cdots\!47}{40\!\cdots\!24}a^{9}-\frac{15\!\cdots\!25}{40\!\cdots\!24}a^{8}+\frac{26\!\cdots\!67}{40\!\cdots\!24}a^{7}+\frac{19\!\cdots\!51}{50\!\cdots\!53}a^{6}-\frac{15\!\cdots\!94}{50\!\cdots\!53}a^{5}-\frac{52\!\cdots\!13}{31\!\cdots\!48}a^{4}+\frac{11\!\cdots\!39}{20\!\cdots\!12}a^{3}+\frac{12\!\cdots\!63}{40\!\cdots\!24}a^{2}-\frac{81\!\cdots\!61}{40\!\cdots\!24}a-\frac{36\!\cdots\!95}{31\!\cdots\!48}$, $\frac{98\!\cdots\!97}{28\!\cdots\!86}a^{11}+\frac{27\!\cdots\!71}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!91}{56\!\cdots\!72}a^{9}-\frac{38\!\cdots\!43}{56\!\cdots\!72}a^{8}+\frac{11\!\cdots\!87}{11\!\cdots\!44}a^{7}+\frac{77\!\cdots\!99}{11\!\cdots\!44}a^{6}-\frac{54\!\cdots\!97}{11\!\cdots\!44}a^{5}-\frac{34\!\cdots\!43}{11\!\cdots\!44}a^{4}+\frac{24\!\cdots\!87}{28\!\cdots\!86}a^{3}+\frac{61\!\cdots\!23}{11\!\cdots\!44}a^{2}-\frac{33\!\cdots\!81}{11\!\cdots\!44}a-\frac{90\!\cdots\!63}{43\!\cdots\!44}$, $\frac{19\!\cdots\!25}{11\!\cdots\!44}a^{11}+\frac{15\!\cdots\!73}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!41}{11\!\cdots\!44}a^{9}-\frac{42\!\cdots\!49}{11\!\cdots\!44}a^{8}+\frac{29\!\cdots\!53}{56\!\cdots\!72}a^{7}+\frac{41\!\cdots\!47}{11\!\cdots\!44}a^{6}-\frac{26\!\cdots\!33}{11\!\cdots\!44}a^{5}-\frac{88\!\cdots\!03}{56\!\cdots\!72}a^{4}+\frac{58\!\cdots\!88}{14\!\cdots\!93}a^{3}+\frac{15\!\cdots\!79}{56\!\cdots\!72}a^{2}-\frac{38\!\cdots\!13}{28\!\cdots\!86}a-\frac{88\!\cdots\!77}{87\!\cdots\!88}$, $\frac{35\!\cdots\!57}{87\!\cdots\!88}a^{11}+\frac{12\!\cdots\!37}{56\!\cdots\!72}a^{10}-\frac{33\!\cdots\!61}{28\!\cdots\!86}a^{9}-\frac{71\!\cdots\!63}{11\!\cdots\!44}a^{8}+\frac{14\!\cdots\!37}{11\!\cdots\!44}a^{7}+\frac{74\!\cdots\!11}{11\!\cdots\!44}a^{6}-\frac{69\!\cdots\!75}{11\!\cdots\!44}a^{5}-\frac{16\!\cdots\!35}{56\!\cdots\!72}a^{4}+\frac{10\!\cdots\!71}{87\!\cdots\!88}a^{3}+\frac{48\!\cdots\!93}{87\!\cdots\!88}a^{2}-\frac{12\!\cdots\!77}{28\!\cdots\!86}a-\frac{95\!\cdots\!53}{43\!\cdots\!44}$, $\frac{59\!\cdots\!45}{87\!\cdots\!88}a^{11}+\frac{45\!\cdots\!61}{11\!\cdots\!44}a^{10}-\frac{23\!\cdots\!11}{11\!\cdots\!44}a^{9}-\frac{13\!\cdots\!25}{11\!\cdots\!44}a^{8}+\frac{12\!\cdots\!51}{56\!\cdots\!72}a^{7}+\frac{13\!\cdots\!37}{11\!\cdots\!44}a^{6}-\frac{91\!\cdots\!71}{87\!\cdots\!88}a^{5}-\frac{12\!\cdots\!81}{21\!\cdots\!22}a^{4}+\frac{11\!\cdots\!61}{56\!\cdots\!72}a^{3}+\frac{59\!\cdots\!07}{56\!\cdots\!72}a^{2}-\frac{41\!\cdots\!27}{56\!\cdots\!72}a-\frac{35\!\cdots\!91}{87\!\cdots\!88}$, $\frac{13\!\cdots\!41}{11\!\cdots\!44}a^{11}+\frac{39\!\cdots\!85}{56\!\cdots\!72}a^{10}-\frac{38\!\cdots\!17}{11\!\cdots\!44}a^{9}-\frac{22\!\cdots\!99}{11\!\cdots\!44}a^{8}+\frac{41\!\cdots\!19}{11\!\cdots\!44}a^{7}+\frac{11\!\cdots\!13}{56\!\cdots\!72}a^{6}-\frac{96\!\cdots\!59}{56\!\cdots\!72}a^{5}-\frac{10\!\cdots\!85}{11\!\cdots\!44}a^{4}+\frac{18\!\cdots\!73}{56\!\cdots\!72}a^{3}+\frac{19\!\cdots\!23}{11\!\cdots\!44}a^{2}-\frac{13\!\cdots\!97}{11\!\cdots\!44}a-\frac{58\!\cdots\!97}{87\!\cdots\!88}$, $\frac{12\!\cdots\!15}{56\!\cdots\!72}a^{11}-\frac{18\!\cdots\!11}{11\!\cdots\!44}a^{10}-\frac{46\!\cdots\!55}{56\!\cdots\!72}a^{9}+\frac{39\!\cdots\!09}{14\!\cdots\!93}a^{8}+\frac{13\!\cdots\!75}{11\!\cdots\!44}a^{7}-\frac{48\!\cdots\!41}{11\!\cdots\!44}a^{6}-\frac{76\!\cdots\!53}{11\!\cdots\!44}a^{5}-\frac{91\!\cdots\!49}{87\!\cdots\!88}a^{4}+\frac{85\!\cdots\!91}{56\!\cdots\!72}a^{3}+\frac{47\!\cdots\!63}{11\!\cdots\!44}a^{2}-\frac{67\!\cdots\!47}{11\!\cdots\!44}a-\frac{82\!\cdots\!07}{43\!\cdots\!44}$, $\frac{41\!\cdots\!13}{11\!\cdots\!44}a^{11}-\frac{33\!\cdots\!21}{11\!\cdots\!44}a^{10}-\frac{15\!\cdots\!70}{14\!\cdots\!93}a^{9}+\frac{99\!\cdots\!11}{11\!\cdots\!44}a^{8}+\frac{67\!\cdots\!59}{56\!\cdots\!72}a^{7}-\frac{54\!\cdots\!81}{56\!\cdots\!72}a^{6}-\frac{15\!\cdots\!99}{28\!\cdots\!86}a^{5}+\frac{51\!\cdots\!31}{11\!\cdots\!44}a^{4}+\frac{92\!\cdots\!49}{87\!\cdots\!88}a^{3}-\frac{47\!\cdots\!93}{56\!\cdots\!72}a^{2}-\frac{59\!\cdots\!73}{11\!\cdots\!44}a+\frac{15\!\cdots\!27}{43\!\cdots\!44}$, $\frac{29\!\cdots\!27}{87\!\cdots\!88}a^{11}+\frac{24\!\cdots\!01}{11\!\cdots\!44}a^{10}-\frac{57\!\cdots\!47}{56\!\cdots\!72}a^{9}-\frac{70\!\cdots\!27}{11\!\cdots\!44}a^{8}+\frac{60\!\cdots\!81}{56\!\cdots\!72}a^{7}+\frac{18\!\cdots\!05}{28\!\cdots\!86}a^{6}-\frac{28\!\cdots\!67}{56\!\cdots\!72}a^{5}-\frac{33\!\cdots\!81}{11\!\cdots\!44}a^{4}+\frac{10\!\cdots\!37}{11\!\cdots\!44}a^{3}+\frac{30\!\cdots\!35}{56\!\cdots\!72}a^{2}-\frac{38\!\cdots\!77}{11\!\cdots\!44}a-\frac{46\!\cdots\!85}{21\!\cdots\!22}$, $\frac{16\!\cdots\!17}{28\!\cdots\!86}a^{11}+\frac{81\!\cdots\!31}{11\!\cdots\!44}a^{10}-\frac{25\!\cdots\!27}{14\!\cdots\!93}a^{9}-\frac{11\!\cdots\!63}{56\!\cdots\!72}a^{8}+\frac{23\!\cdots\!07}{11\!\cdots\!44}a^{7}+\frac{21\!\cdots\!05}{11\!\cdots\!44}a^{6}-\frac{14\!\cdots\!27}{11\!\cdots\!44}a^{5}-\frac{82\!\cdots\!89}{11\!\cdots\!44}a^{4}+\frac{20\!\cdots\!75}{56\!\cdots\!72}a^{3}+\frac{74\!\cdots\!39}{87\!\cdots\!88}a^{2}-\frac{43\!\cdots\!27}{11\!\cdots\!44}a+\frac{26\!\cdots\!12}{10\!\cdots\!61}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1377319421.77 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1377319421.77 \cdot 2}{2\cdot\sqrt{59343998293561502407627433}}\cr\approx \mathstrut & 0.732328975366 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.29129177.2, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{4}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | R | R | ${\href{/padicField/13.1.0.1}{1} }^{12}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.12.10.5 | $x^{12} - 154 x^{6} - 1421$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
\(11\) | 11.12.6.2 | $x^{12} + 363 x^{8} - 5324 x^{6} + 87846 x^{4} - 1127357 x^{2} + 3543122$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |