Normalized defining polynomial
\( x^{12} - 3 x^{11} - 12 x^{10} + 47 x^{9} - x^{8} - 134 x^{7} + 102 x^{6} + 88 x^{5} - 118 x^{4} + \cdots + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(54191813450093072\) \(\medspace = 2^{4}\cdot 13^{4}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(24.80\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}13^{2/3}17^{3/4}\approx 73.47714215210142$ | ||
Ramified primes: | \(2\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $3$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{26}a^{11}-\frac{3}{13}a^{10}+\frac{3}{13}a^{9}-\frac{5}{13}a^{8}-\frac{5}{13}a^{7}-\frac{1}{2}a^{6}-\frac{1}{13}a^{5}+\frac{3}{26}a^{4}+\frac{3}{26}a^{3}+\frac{9}{26}a^{2}+\frac{7}{26}a-\frac{2}{13}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $a^{11}-2a^{10}-14a^{9}+33a^{8}+32a^{7}-102a^{6}+88a^{4}-30a^{3}-12a^{2}+9a-1$, $\frac{75}{26}a^{11}-\frac{82}{13}a^{10}-\frac{1045}{26}a^{9}+\frac{2695}{26}a^{8}+\frac{2279}{26}a^{7}-328a^{6}+\frac{331}{26}a^{5}+\frac{7843}{26}a^{4}-\frac{2375}{26}a^{3}-\frac{670}{13}a^{2}+\frac{629}{26}a-\frac{79}{26}$, $\frac{228}{13}a^{11}-\frac{1163}{26}a^{10}-\frac{5987}{26}a^{9}+\frac{18723}{26}a^{8}+\frac{7855}{26}a^{7}-\frac{4407}{2}a^{6}+\frac{10477}{13}a^{5}+\frac{24357}{13}a^{4}-\frac{31821}{26}a^{3}-\frac{2693}{13}a^{2}+\frac{6949}{26}a-\frac{561}{13}$, $\frac{217}{13}a^{11}-\frac{535}{13}a^{10}-\frac{2897}{13}a^{9}+\frac{8659}{13}a^{8}+\frac{4512}{13}a^{7}-2063a^{6}+\frac{7522}{13}a^{5}+\frac{23583}{13}a^{4}-\frac{12856}{13}a^{3}-\frac{3364}{13}a^{2}+\frac{2845}{13}a-\frac{361}{13}$, $\frac{103}{26}a^{11}-\frac{127}{13}a^{10}-\frac{1371}{26}a^{9}+\frac{4105}{26}a^{8}+\frac{2077}{26}a^{7}-486a^{6}+\frac{3811}{26}a^{5}+\frac{10917}{26}a^{4}-\frac{6425}{26}a^{3}-\frac{674}{13}a^{2}+\frac{1475}{26}a-\frac{243}{26}$, $2a^{11}-5a^{10}-26a^{9}+80a^{8}+31a^{7}-236a^{6}+102a^{5}+176a^{4}-148a^{3}+6a^{2}+31a-9$, $\frac{96}{13}a^{11}-\frac{251}{13}a^{10}-\frac{2501}{26}a^{9}+\frac{8051}{26}a^{8}+\frac{2981}{26}a^{7}-\frac{1883}{2}a^{6}+\frac{9691}{26}a^{5}+\frac{10272}{13}a^{4}-\frac{6966}{13}a^{3}-\frac{2211}{26}a^{2}+\frac{1491}{13}a-\frac{469}{26}$, $\frac{112}{13}a^{11}-\frac{282}{13}a^{10}-\frac{2959}{26}a^{9}+\frac{9109}{26}a^{8}+\frac{4143}{26}a^{7}-\frac{2163}{2}a^{6}+\frac{9523}{26}a^{5}+\frac{12257}{13}a^{4}-\frac{7568}{13}a^{3}-\frac{3223}{26}a^{2}+\frac{1681}{13}a-\frac{493}{26}$, $\frac{131}{13}a^{11}-\frac{675}{26}a^{10}-\frac{1710}{13}a^{9}+\frac{5424}{13}a^{8}+\frac{2096}{13}a^{7}-1271a^{6}+\frac{13087}{26}a^{5}+\frac{13861}{13}a^{4}-\frac{19325}{26}a^{3}-\frac{2699}{26}a^{2}+\frac{4239}{26}a-\frac{723}{26}$, $\frac{29}{2}a^{11}-\frac{71}{2}a^{10}-\frac{387}{2}a^{9}+\frac{1149}{2}a^{8}+\frac{603}{2}a^{7}-1773a^{6}+500a^{5}+\frac{3087}{2}a^{4}-851a^{3}-\frac{415}{2}a^{2}+185a-25$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 29571.8190965 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 29571.8190965 \cdot 1}{2\cdot\sqrt{54191813450093072}}\cr\approx \mathstrut & 0.260160375607 \end{aligned}\]
Galois group
$C_3^2:C_{12}$ (as 12T73):
A solvable group of order 108 |
The 18 conjugacy class representatives for $C_3^2:C_{12}$ |
Character table for $C_3^2:C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.4913.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 sibling: | data not computed |
Degree 18 siblings: | data not computed |
Degree 27 sibling: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
\(13\) | $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
13.3.0.1 | $x^{3} + 2 x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
13.3.2.2 | $x^{3} + 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |