Properties

Label 12.12.4891005035...5857.1
Degree $12$
Signature $[12, 0]$
Discriminant $257^{9}$
Root discriminant $64.19$
Ramified prime $257$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-119128, -19988, 289908, 257547, 4263, -69890, -19442, 4623, 2187, -55, -81, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 81*x^10 - 55*x^9 + 2187*x^8 + 4623*x^7 - 19442*x^6 - 69890*x^5 + 4263*x^4 + 257547*x^3 + 289908*x^2 - 19988*x - 119128)
 
gp: K = bnfinit(x^12 - x^11 - 81*x^10 - 55*x^9 + 2187*x^8 + 4623*x^7 - 19442*x^6 - 69890*x^5 + 4263*x^4 + 257547*x^3 + 289908*x^2 - 19988*x - 119128, 1)
 

Normalized defining polynomial

\( x^{12} - x^{11} - 81 x^{10} - 55 x^{9} + 2187 x^{8} + 4623 x^{7} - 19442 x^{6} - 69890 x^{5} + 4263 x^{4} + 257547 x^{3} + 289908 x^{2} - 19988 x - 119128 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4891005035897482905857=257^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $257$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{5}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{365276900168592} a^{11} + \frac{5797912272233}{182638450084296} a^{10} + \frac{1083729290491}{121758966722864} a^{9} - \frac{1929969629467}{91319225042148} a^{8} + \frac{7966124650315}{365276900168592} a^{7} + \frac{1985976044827}{45659612521074} a^{6} - \frac{147036897071}{946313212872} a^{5} - \frac{15184704328695}{30439741680716} a^{4} + \frac{54801618786499}{365276900168592} a^{3} + \frac{14931018576893}{30439741680716} a^{2} + \frac{36060242789615}{91319225042148} a - \frac{17053755978565}{45659612521074}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9021039.03079 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:C_4$ (as 12T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $C_3 : C_4$
Character table for $C_3 : C_4$

Intermediate fields

\(\Q(\sqrt{257}) \), 3.3.257.1 x3, 4.4.16974593.1, 6.6.16974593.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
257Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.257.2t1.1c1$1$ $ 257 $ $x^{2} - x - 64$ $C_2$ (as 2T1) $1$ $1$
* 1.257.4t1.1c1$1$ $ 257 $ $x^{4} - x^{3} - 96 x^{2} + 16 x + 256$ $C_4$ (as 4T1) $0$ $1$
* 1.257.4t1.1c2$1$ $ 257 $ $x^{4} - x^{3} - 96 x^{2} + 16 x + 256$ $C_4$ (as 4T1) $0$ $1$
*2 2.257e2.12t5.1c1$2$ $ 257^{2}$ $x^{12} - x^{11} - 81 x^{10} - 55 x^{9} + 2187 x^{8} + 4623 x^{7} - 19442 x^{6} - 69890 x^{5} + 4263 x^{4} + 257547 x^{3} + 289908 x^{2} - 19988 x - 119128$ $C_3 : C_4$ (as 12T5) $-1$ $2$
*2 2.257.3t2.1c1$2$ $ 257 $ $x^{3} - x^{2} - 4 x + 3$ $S_3$ (as 3T2) $1$ $2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.