Normalized defining polynomial
\( x^{12} - 44x^{10} + 574x^{8} - 2128x^{6} + 1148x^{4} - 176x^{2} + 8 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[12, 0]$ |
| |
| Discriminant: |
\(4297083967217611046912\)
\(\medspace = 2^{33}\cdot 29^{8}\)
|
| |
| Root discriminant: | \(63.50\) |
| |
| Galois root discriminant: | $2^{27/8}29^{2/3}\approx 97.92830419169753$ | ||
| Ramified primes: |
\(2\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{2}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}-\frac{1}{2}$, $\frac{1}{4}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{192}a^{8}-\frac{5}{48}a^{6}-\frac{7}{24}a^{2}-\frac{1}{48}$, $\frac{1}{192}a^{9}-\frac{5}{48}a^{7}-\frac{7}{24}a^{3}-\frac{1}{48}a$, $\frac{1}{384}a^{10}+\frac{1}{12}a^{6}+\frac{5}{48}a^{4}-\frac{17}{96}a^{2}+\frac{7}{24}$, $\frac{1}{384}a^{11}+\frac{1}{12}a^{7}+\frac{5}{48}a^{5}-\frac{17}{96}a^{3}+\frac{7}{24}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{8}a^{10}-\frac{527}{96}a^{8}+\frac{1711}{24}a^{6}-260a^{4}+\frac{1451}{12}a^{2}-\frac{217}{24}$, $\frac{313}{384}a^{11}-\frac{1}{4}a^{10}-\frac{3437}{96}a^{9}+\frac{527}{48}a^{8}+\frac{3721}{8}a^{7}-\frac{1711}{12}a^{6}-\frac{81547}{48}a^{5}+520a^{4}+\frac{77327}{96}a^{3}-\frac{1451}{6}a^{2}-\frac{155}{2}a+\frac{277}{12}$, $\frac{313}{384}a^{11}+\frac{1}{4}a^{10}-\frac{3437}{96}a^{9}-\frac{527}{48}a^{8}+\frac{3721}{8}a^{7}+\frac{1711}{12}a^{6}-\frac{81547}{48}a^{5}-520a^{4}+\frac{77327}{96}a^{3}+\frac{1451}{6}a^{2}-\frac{155}{2}a-\frac{277}{12}$, $\frac{1}{192}a^{10}-\frac{11}{48}a^{8}+3a^{6}-\frac{271}{24}a^{4}+\frac{287}{48}a^{2}-\frac{1}{2}$, $\frac{215}{384}a^{11}+\frac{1}{4}a^{10}-\frac{295}{12}a^{9}-\frac{527}{48}a^{8}+\frac{3829}{12}a^{7}+\frac{1711}{12}a^{6}-\frac{55745}{48}a^{5}-520a^{4}+\frac{16947}{32}a^{3}+\frac{1451}{6}a^{2}-\frac{803}{24}a-\frac{205}{12}$, $\frac{241}{384}a^{11}+\frac{109}{192}a^{10}-\frac{5287}{192}a^{9}-\frac{1595}{64}a^{8}+\frac{5709}{16}a^{7}+\frac{15521}{48}a^{6}-\frac{61963}{48}a^{5}-\frac{28213}{24}a^{4}+\frac{53411}{96}a^{3}+\frac{25561}{48}a^{2}-\frac{457}{16}a-\frac{1979}{48}$, $\frac{95}{384}a^{11}+\frac{11}{96}a^{10}-\frac{2087}{192}a^{9}-\frac{161}{32}a^{8}+\frac{2261}{16}a^{7}+\frac{1567}{24}a^{6}-\frac{24833}{48}a^{5}-\frac{2849}{12}a^{4}+\frac{23989}{96}a^{3}+\frac{2591}{24}a^{2}-\frac{389}{16}a-\frac{241}{24}$, $\frac{95}{384}a^{11}-\frac{11}{96}a^{10}-\frac{2087}{192}a^{9}+\frac{161}{32}a^{8}+\frac{2261}{16}a^{7}-\frac{1567}{24}a^{6}-\frac{24833}{48}a^{5}+\frac{2849}{12}a^{4}+\frac{23989}{96}a^{3}-\frac{2591}{24}a^{2}-\frac{389}{16}a+\frac{241}{24}$, $\frac{73}{384}a^{11}-\frac{5}{64}a^{10}-\frac{401}{48}a^{9}+\frac{659}{192}a^{8}+\frac{326}{3}a^{7}-\frac{2143}{48}a^{6}-\frac{19135}{48}a^{5}+\frac{1313}{8}a^{4}+\frac{6237}{32}a^{3}-\frac{3931}{48}a^{2}-\frac{331}{24}a+\frac{289}{48}$, $\frac{193}{96}a^{11}-\frac{57}{64}a^{10}-\frac{2117}{24}a^{9}+\frac{937}{24}a^{8}+1143a^{7}-\frac{3029}{6}a^{6}-\frac{49627}{12}a^{5}+\frac{14503}{8}a^{4}+\frac{42911}{24}a^{3}-\frac{34981}{48}a^{2}-112a+\frac{553}{12}$, $\frac{413}{384}a^{11}-\frac{47}{192}a^{10}-\frac{1509}{32}a^{9}+\frac{343}{32}a^{8}+\frac{14641}{24}a^{7}-\frac{3317}{24}a^{6}-\frac{105323}{48}a^{5}+\frac{11777}{24}a^{4}+\frac{86075}{96}a^{3}-\frac{8141}{48}a^{2}-\frac{821}{12}a+\frac{233}{24}$
|
| |
| Regulator: | \( 64178206.6169 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 64178206.6169 \cdot 1}{2\cdot\sqrt{4297083967217611046912}}\cr\approx \mathstrut & 2.00507494118 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $A_4:C_4$ |
| Character table for $A_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.6728.1 x3, 6.6.362127872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Minimal sibling: | 12.12.68753343475481776750592.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{3}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/31.3.0.1}{3} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{3}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.11a1.13 | $x^{4} + 4 x^{2} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $$[2, 3, 4]$$ |
| 2.1.4.11a1.13 | $x^{4} + 4 x^{2} + 8 x + 2$ | $4$ | $1$ | $11$ | $D_{4}$ | $$[2, 3, 4]$$ | |
| 2.1.4.11a1.9 | $x^{4} + 4 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $$[3, 4]$$ | |
|
\(29\)
| 29.4.3.8a1.2 | $x^{12} + 6 x^{10} + 45 x^{9} + 18 x^{8} + 180 x^{7} + 707 x^{6} + 360 x^{5} + 1386 x^{4} + 3735 x^{3} + 1374 x^{2} + 180 x + 37$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $$[\ ]_{3}^{4}$$ |