Normalized defining polynomial
\( x^{12} - x^{11} - 68 x^{10} + 3 x^{9} + 1528 x^{8} + 1135 x^{7} - 12600 x^{6} - 17100 x^{5} + \cdots - 2789 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(416537479679833550394737\) \(\medspace = 17^{9}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(92.96\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{3/4}37^{2/3}\approx 92.96179631764876$ | ||
Ramified primes: | \(17\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(629=17\cdot 37\) | ||
Dirichlet character group: | $\lbrace$$\chi_{629}(1,·)$, $\chi_{629}(322,·)$, $\chi_{629}(38,·)$, $\chi_{629}(137,·)$, $\chi_{629}(174,·)$, $\chi_{629}(47,·)$, $\chi_{629}(528,·)$, $\chi_{629}(84,·)$, $\chi_{629}(149,·)$, $\chi_{629}(186,·)$, $\chi_{629}(285,·)$, $\chi_{629}(565,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}$, $\frac{1}{53\!\cdots\!02}a^{11}+\frac{93\!\cdots\!57}{53\!\cdots\!02}a^{10}+\frac{58\!\cdots\!84}{26\!\cdots\!51}a^{9}+\frac{99\!\cdots\!14}{26\!\cdots\!51}a^{8}-\frac{12\!\cdots\!91}{53\!\cdots\!02}a^{7}+\frac{45\!\cdots\!72}{26\!\cdots\!51}a^{6}-\frac{25\!\cdots\!61}{53\!\cdots\!02}a^{5}+\frac{19\!\cdots\!14}{26\!\cdots\!51}a^{4}+\frac{13\!\cdots\!57}{26\!\cdots\!51}a^{3}-\frac{60\!\cdots\!85}{26\!\cdots\!51}a^{2}-\frac{68\!\cdots\!93}{53\!\cdots\!02}a+\frac{21\!\cdots\!79}{53\!\cdots\!02}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{42\!\cdots\!47}{26\!\cdots\!51}a^{11}-\frac{10\!\cdots\!21}{26\!\cdots\!51}a^{10}-\frac{26\!\cdots\!28}{26\!\cdots\!51}a^{9}+\frac{38\!\cdots\!11}{26\!\cdots\!51}a^{8}+\frac{53\!\cdots\!57}{26\!\cdots\!51}a^{7}-\frac{30\!\cdots\!46}{26\!\cdots\!51}a^{6}-\frac{37\!\cdots\!77}{26\!\cdots\!51}a^{5}-\frac{56\!\cdots\!91}{26\!\cdots\!51}a^{4}+\frac{38\!\cdots\!08}{26\!\cdots\!51}a^{3}-\frac{31\!\cdots\!43}{26\!\cdots\!51}a^{2}+\frac{20\!\cdots\!09}{26\!\cdots\!51}a+\frac{58\!\cdots\!10}{26\!\cdots\!51}$, $\frac{30\!\cdots\!65}{53\!\cdots\!02}a^{11}-\frac{71\!\cdots\!83}{53\!\cdots\!02}a^{10}-\frac{10\!\cdots\!44}{26\!\cdots\!51}a^{9}+\frac{13\!\cdots\!24}{26\!\cdots\!51}a^{8}+\frac{43\!\cdots\!87}{53\!\cdots\!02}a^{7}-\frac{10\!\cdots\!44}{26\!\cdots\!51}a^{6}-\frac{35\!\cdots\!21}{53\!\cdots\!02}a^{5}-\frac{44\!\cdots\!42}{26\!\cdots\!51}a^{4}+\frac{44\!\cdots\!35}{26\!\cdots\!51}a^{3}+\frac{18\!\cdots\!78}{26\!\cdots\!51}a^{2}-\frac{63\!\cdots\!39}{53\!\cdots\!02}a-\frac{24\!\cdots\!71}{53\!\cdots\!02}$, $\frac{35\!\cdots\!47}{53\!\cdots\!02}a^{11}-\frac{97\!\cdots\!33}{53\!\cdots\!02}a^{10}-\frac{11\!\cdots\!42}{26\!\cdots\!51}a^{9}+\frac{20\!\cdots\!38}{26\!\cdots\!51}a^{8}+\frac{45\!\cdots\!69}{53\!\cdots\!02}a^{7}-\frac{21\!\cdots\!24}{26\!\cdots\!51}a^{6}-\frac{35\!\cdots\!79}{53\!\cdots\!02}a^{5}+\frac{30\!\cdots\!41}{26\!\cdots\!51}a^{4}+\frac{36\!\cdots\!81}{26\!\cdots\!51}a^{3}-\frac{48\!\cdots\!49}{26\!\cdots\!51}a^{2}-\frac{27\!\cdots\!19}{53\!\cdots\!02}a+\frac{94\!\cdots\!27}{53\!\cdots\!02}$, $\frac{42\!\cdots\!47}{26\!\cdots\!51}a^{11}-\frac{10\!\cdots\!21}{26\!\cdots\!51}a^{10}-\frac{26\!\cdots\!28}{26\!\cdots\!51}a^{9}+\frac{38\!\cdots\!11}{26\!\cdots\!51}a^{8}+\frac{53\!\cdots\!57}{26\!\cdots\!51}a^{7}-\frac{30\!\cdots\!46}{26\!\cdots\!51}a^{6}-\frac{37\!\cdots\!77}{26\!\cdots\!51}a^{5}-\frac{56\!\cdots\!91}{26\!\cdots\!51}a^{4}+\frac{38\!\cdots\!08}{26\!\cdots\!51}a^{3}-\frac{31\!\cdots\!43}{26\!\cdots\!51}a^{2}-\frac{61\!\cdots\!42}{26\!\cdots\!51}a+\frac{48\!\cdots\!08}{26\!\cdots\!51}$, $\frac{14\!\cdots\!39}{26\!\cdots\!51}a^{11}-\frac{58\!\cdots\!11}{26\!\cdots\!51}a^{10}-\frac{84\!\cdots\!38}{26\!\cdots\!51}a^{9}+\frac{28\!\cdots\!32}{26\!\cdots\!51}a^{8}+\frac{16\!\cdots\!23}{26\!\cdots\!51}a^{7}-\frac{42\!\cdots\!26}{26\!\cdots\!51}a^{6}-\frac{13\!\cdots\!97}{26\!\cdots\!51}a^{5}+\frac{21\!\cdots\!49}{26\!\cdots\!51}a^{4}+\frac{33\!\cdots\!54}{26\!\cdots\!51}a^{3}-\frac{32\!\cdots\!86}{26\!\cdots\!51}a^{2}-\frac{17\!\cdots\!02}{26\!\cdots\!51}a-\frac{12\!\cdots\!23}{26\!\cdots\!51}$, $\frac{46\!\cdots\!39}{26\!\cdots\!51}a^{11}-\frac{42\!\cdots\!87}{53\!\cdots\!02}a^{10}-\frac{33\!\cdots\!88}{26\!\cdots\!51}a^{9}-\frac{12\!\cdots\!77}{26\!\cdots\!51}a^{8}+\frac{77\!\cdots\!54}{26\!\cdots\!51}a^{7}+\frac{15\!\cdots\!83}{53\!\cdots\!02}a^{6}-\frac{13\!\cdots\!39}{53\!\cdots\!02}a^{5}-\frac{92\!\cdots\!61}{26\!\cdots\!51}a^{4}+\frac{15\!\cdots\!54}{26\!\cdots\!51}a^{3}+\frac{21\!\cdots\!39}{26\!\cdots\!51}a^{2}-\frac{96\!\cdots\!71}{26\!\cdots\!51}a-\frac{22\!\cdots\!77}{53\!\cdots\!02}$, $\frac{15\!\cdots\!13}{53\!\cdots\!02}a^{11}-\frac{15\!\cdots\!51}{26\!\cdots\!51}a^{10}-\frac{51\!\cdots\!04}{26\!\cdots\!51}a^{9}+\frac{56\!\cdots\!77}{26\!\cdots\!51}a^{8}+\frac{22\!\cdots\!91}{53\!\cdots\!02}a^{7}-\frac{66\!\cdots\!71}{53\!\cdots\!02}a^{6}-\frac{96\!\cdots\!75}{26\!\cdots\!51}a^{5}-\frac{29\!\cdots\!63}{26\!\cdots\!51}a^{4}+\frac{24\!\cdots\!87}{26\!\cdots\!51}a^{3}+\frac{64\!\cdots\!73}{26\!\cdots\!51}a^{2}-\frac{40\!\cdots\!55}{53\!\cdots\!02}a+\frac{20\!\cdots\!15}{26\!\cdots\!51}$, $\frac{10\!\cdots\!73}{53\!\cdots\!02}a^{11}+\frac{20\!\cdots\!77}{53\!\cdots\!02}a^{10}-\frac{73\!\cdots\!79}{53\!\cdots\!02}a^{9}-\frac{66\!\cdots\!71}{53\!\cdots\!02}a^{8}+\frac{83\!\cdots\!76}{26\!\cdots\!51}a^{7}+\frac{26\!\cdots\!33}{53\!\cdots\!02}a^{6}-\frac{13\!\cdots\!45}{53\!\cdots\!02}a^{5}-\frac{28\!\cdots\!35}{53\!\cdots\!02}a^{4}+\frac{15\!\cdots\!63}{53\!\cdots\!02}a^{3}+\frac{52\!\cdots\!17}{53\!\cdots\!02}a^{2}+\frac{76\!\cdots\!92}{26\!\cdots\!51}a+\frac{59\!\cdots\!45}{26\!\cdots\!51}$, $\frac{29\!\cdots\!87}{53\!\cdots\!02}a^{11}+\frac{16\!\cdots\!67}{26\!\cdots\!51}a^{10}-\frac{30\!\cdots\!31}{53\!\cdots\!02}a^{9}-\frac{22\!\cdots\!65}{53\!\cdots\!02}a^{8}+\frac{45\!\cdots\!92}{26\!\cdots\!51}a^{7}+\frac{25\!\cdots\!08}{26\!\cdots\!51}a^{6}-\frac{43\!\cdots\!34}{26\!\cdots\!51}a^{5}-\frac{41\!\cdots\!21}{53\!\cdots\!02}a^{4}+\frac{18\!\cdots\!49}{53\!\cdots\!02}a^{3}+\frac{92\!\cdots\!05}{53\!\cdots\!02}a^{2}-\frac{60\!\cdots\!16}{26\!\cdots\!51}a-\frac{47\!\cdots\!73}{53\!\cdots\!02}$, $\frac{43\!\cdots\!33}{53\!\cdots\!02}a^{11}-\frac{52\!\cdots\!60}{26\!\cdots\!51}a^{10}-\frac{13\!\cdots\!92}{26\!\cdots\!51}a^{9}+\frac{20\!\cdots\!06}{26\!\cdots\!51}a^{8}+\frac{59\!\cdots\!87}{53\!\cdots\!02}a^{7}-\frac{34\!\cdots\!35}{53\!\cdots\!02}a^{6}-\frac{24\!\cdots\!29}{26\!\cdots\!51}a^{5}-\frac{34\!\cdots\!15}{26\!\cdots\!51}a^{4}+\frac{54\!\cdots\!48}{26\!\cdots\!51}a^{3}+\frac{14\!\cdots\!73}{26\!\cdots\!51}a^{2}-\frac{59\!\cdots\!51}{53\!\cdots\!02}a-\frac{80\!\cdots\!95}{26\!\cdots\!51}$, $\frac{11\!\cdots\!33}{53\!\cdots\!02}a^{11}+\frac{10\!\cdots\!15}{53\!\cdots\!02}a^{10}-\frac{10\!\cdots\!85}{53\!\cdots\!02}a^{9}-\frac{71\!\cdots\!31}{53\!\cdots\!02}a^{8}+\frac{15\!\cdots\!12}{26\!\cdots\!51}a^{7}+\frac{16\!\cdots\!85}{53\!\cdots\!02}a^{6}-\frac{29\!\cdots\!59}{53\!\cdots\!02}a^{5}-\frac{13\!\cdots\!25}{53\!\cdots\!02}a^{4}+\frac{64\!\cdots\!55}{53\!\cdots\!02}a^{3}+\frac{32\!\cdots\!63}{53\!\cdots\!02}a^{2}-\frac{25\!\cdots\!32}{26\!\cdots\!51}a-\frac{86\!\cdots\!08}{26\!\cdots\!51}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 65606044.7889 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 65606044.7889 \cdot 1}{2\cdot\sqrt{416537479679833550394737}}\cr\approx \mathstrut & 0.208183720640 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.1369.1, 4.4.4913.1, 6.6.9207752993.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(37\) | 37.12.8.1 | $x^{12} + 18 x^{10} + 220 x^{9} + 114 x^{8} + 864 x^{7} - 5754 x^{6} + 7320 x^{5} - 47346 x^{4} - 240044 x^{3} + 340080 x^{2} - 2045220 x + 8612757$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |