Normalized defining polynomial
\( x^{12} - 30 x^{10} - 17 x^{9} + 279 x^{8} + 285 x^{7} - 752 x^{6} - 909 x^{5} + 600 x^{4} + 858 x^{3} - 72 x^{2} - 243 x - 51 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4108400332687853397=3^{18}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(117=3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{117}(64,·)$, $\chi_{117}(1,·)$, $\chi_{117}(5,·)$, $\chi_{117}(103,·)$, $\chi_{117}(8,·)$, $\chi_{117}(44,·)$, $\chi_{117}(47,·)$, $\chi_{117}(40,·)$, $\chi_{117}(83,·)$, $\chi_{117}(86,·)$, $\chi_{117}(25,·)$, $\chi_{117}(79,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{8}{17} a^{9} + \frac{3}{17} a^{8} - \frac{3}{17} a^{7} - \frac{8}{17} a^{6} + \frac{8}{17} a^{5} + \frac{2}{17} a^{4} - \frac{2}{17} a^{3} - \frac{5}{17} a^{2} - \frac{4}{17} a$, $\frac{1}{505630711} a^{11} + \frac{13980801}{505630711} a^{10} - \frac{57069019}{505630711} a^{9} + \frac{89992094}{505630711} a^{8} + \frac{124232579}{505630711} a^{7} + \frac{175592809}{505630711} a^{6} - \frac{85002672}{505630711} a^{5} + \frac{249711641}{505630711} a^{4} + \frac{203102154}{505630711} a^{3} + \frac{95213988}{505630711} a^{2} - \frac{205608784}{505630711} a + \frac{1647686}{29742983}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 520561.482962 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{9})^+\), 4.4.19773.1, 6.6.14414517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $13$ | 13.12.9.2 | $x^{12} - 52 x^{8} + 676 x^{4} - 79092$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |