Normalized defining polynomial
\( x^{12} - x^{11} - 100067 x^{10} + 4532198 x^{9} + 2259444770 x^{8} - 152359965054 x^{7} - 16041513207467 x^{6} + 1461301745883639 x^{5} + 14413851909825665 x^{4} - 3552570264974645508 x^{3} + 69523530327654696348 x^{2} + 31953284631467426916 x - 861259903428927255084 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(392917207432060604272953142193224798570962446217446400000000=2^{16}\cdot 3^{4}\cdot 5^{8}\cdot 11^{12}\cdot 13^{4}\cdot 17^{4}\cdot 347^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92{,}510.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 13, 17, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{110} a^{7} - \frac{3}{110} a^{6} + \frac{1}{5} a^{5} - \frac{7}{22} a^{4} - \frac{17}{110} a^{3} - \frac{9}{55} a^{2} + \frac{27}{55} a + \frac{4}{11}$, $\frac{1}{660} a^{8} + \frac{2}{55} a^{6} - \frac{28}{165} a^{5} + \frac{1}{66} a^{4} + \frac{103}{330} a^{3} + \frac{13}{60} a^{2} + \frac{19}{110} a + \frac{9}{110}$, $\frac{1}{660} a^{9} + \frac{13}{330} a^{6} - \frac{14}{165} a^{5} - \frac{71}{330} a^{4} + \frac{221}{660} a^{3} + \frac{7}{55} a^{2} + \frac{7}{22} a - \frac{3}{55}$, $\frac{1}{660} a^{10} + \frac{1}{330} a^{7} + \frac{4}{165} a^{6} - \frac{1}{66} a^{5} - \frac{259}{660} a^{4} - \frac{14}{55} a^{3} - \frac{3}{110} a^{2} - \frac{1}{55} a - \frac{5}{11}$, $\frac{1}{254042285050758793186851117572621044761116431346977115215377265953412716315343623772699309140} a^{11} + \frac{22025401578906965778176086352021159483591875644077136795521637822514852101824139278516993}{50808457010151758637370223514524208952223286269395423043075453190682543263068724754539861828} a^{10} - \frac{13195612641300628080655191267813057357923055535695629111218479670976893834948148853271906}{63510571262689698296712779393155261190279107836744278803844316488353179078835905943174827285} a^{9} - \frac{14519409426429798788680906712477403609593757302437194787819491448527313218319924845637949}{25404228505075879318685111757262104476111643134697711521537726595341271631534362377269930914} a^{8} + \frac{172828622653005147619405365034939976695958698135438480977251964283496502073525158384326279}{42340380841793132197808519595436840793519405224496185869229544325568786052557270628783218190} a^{7} + \frac{287754759489797263504637704679386726524489811904043709245535246213126206666312866441380111}{7471831913257611564319150516841795434150483274911091623981684292747432832804224228608803210} a^{6} - \frac{6703712666913377607582436614804341143256639477744921365558650876045234131071316490830662699}{50808457010151758637370223514524208952223286269395423043075453190682543263068724754539861828} a^{5} + \frac{22551364318849558157578619599174130044035532345173573669391272740159263115593013617363014769}{50808457010151758637370223514524208952223286269395423043075453190682543263068724754539861828} a^{4} + \frac{2313422180040137242944755473968400008380720619008177098098486151735306119521634845814281333}{25404228505075879318685111757262104476111643134697711521537726595341271631534362377269930914} a^{3} + \frac{4379319149032117044520897051174453257611868489379094046441159251150561970609438871590593173}{63510571262689698296712779393155261190279107836744278803844316488353179078835905943174827285} a^{2} + \frac{114245483135950200191827056304032306239040456554123777573555702868095877645130379987466726}{1245305318876268594053191752806965905691747212485181937330280715457905472134037371434800535} a - \frac{528003584162950389530637843833433919062165898768855499660873583991234456976833558676288331}{1245305318876268594053191752806965905691747212485181937330280715457905472134037371434800535}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 976514024364000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{11}$ (as 12T272):
| A non-solvable group of order 7920 |
| The 10 conjugacy class representatives for $M_{11}$ |
| Character table for $M_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.8.5 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.12.4 | $x^{11} + 110 x^{2} + 11$ | $11$ | $1$ | $12$ | $C_{11}:C_5$ | $[6/5]_{5}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 347 | Data not computed | ||||||