Normalized defining polynomial
\( x^{12} - x^{11} - 38 x^{10} + 38 x^{9} + 547 x^{8} - 547 x^{7} - 3665 x^{6} + 3665 x^{5} + 11077 x^{4} - 11077 x^{3} - 11036 x^{2} + 11036 x - 1559 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3174921459820581757=11^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(143=11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{143}(32,·)$, $\chi_{143}(1,·)$, $\chi_{143}(98,·)$, $\chi_{143}(100,·)$, $\chi_{143}(133,·)$, $\chi_{143}(12,·)$, $\chi_{143}(76,·)$, $\chi_{143}(109,·)$, $\chi_{143}(21,·)$, $\chi_{143}(54,·)$, $\chi_{143}(23,·)$, $\chi_{143}(56,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{599} a^{7} - \frac{188}{599} a^{6} - \frac{21}{599} a^{5} - \frac{210}{599} a^{4} + \frac{126}{599} a^{3} - \frac{253}{599} a^{2} - \frac{189}{599} a - \frac{31}{599}$, $\frac{1}{599} a^{8} - \frac{24}{599} a^{6} + \frac{35}{599} a^{5} + \frac{180}{599} a^{4} + \frac{74}{599} a^{3} + \frac{167}{599} a^{2} - \frac{222}{599} a + \frac{162}{599}$, $\frac{1}{599} a^{9} - \frac{284}{599} a^{6} + \frac{275}{599} a^{5} - \frac{174}{599} a^{4} + \frac{196}{599} a^{3} + \frac{295}{599} a^{2} - \frac{181}{599} a - \frac{145}{599}$, $\frac{1}{599} a^{10} + \frac{194}{599} a^{6} - \frac{148}{599} a^{5} - \frac{143}{599} a^{4} + \frac{139}{599} a^{3} - \frac{153}{599} a^{2} + \frac{89}{599} a + \frac{181}{599}$, $\frac{1}{599} a^{11} - \frac{215}{599} a^{6} - \frac{262}{599} a^{5} + \frac{147}{599} a^{4} - \frac{38}{599} a^{3} + \frac{53}{599} a^{2} - \frac{291}{599} a + \frac{24}{599}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162467.601473 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.4.265837.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.12.6.2 | $x^{12} + 14641 x^{4} - 322102 x^{2} + 14172488$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |