Normalized defining polynomial
\( x^{12} - x^{11} - 29 x^{10} + 20 x^{9} + 283 x^{8} - 117 x^{7} - 1027 x^{6} + 249 x^{5} + 1081 x^{4} + \cdots - 13 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(30850000558264402577\) \(\medspace = 17^{9}\cdot 127^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(42.08\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{3/4}127^{2/3}\approx 211.53026087633702$ | ||
Ramified primes: | \(17\), \(127\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{31263178}a^{11}+\frac{3275991}{31263178}a^{10}+\frac{2774669}{31263178}a^{9}+\frac{8811579}{31263178}a^{8}-\frac{5515581}{31263178}a^{7}+\frac{3904856}{15631589}a^{6}-\frac{11577981}{31263178}a^{5}+\frac{2709135}{15631589}a^{4}-\frac{3620097}{15631589}a^{3}-\frac{7211293}{31263178}a^{2}+\frac{7330477}{31263178}a-\frac{3665075}{15631589}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{29903716}{15631589}a^{11}-\frac{20518030}{15631589}a^{10}-\frac{873695472}{15631589}a^{9}+\frac{323946008}{15631589}a^{8}+\frac{8565750318}{15631589}a^{7}-\frac{813025594}{15631589}a^{6}-\frac{30978725412}{15631589}a^{5}-\frac{2250119387}{15631589}a^{4}+\frac{31664306134}{15631589}a^{3}+\frac{2644448845}{15631589}a^{2}-\frac{7557466814}{15631589}a+\frac{1266708454}{15631589}$, $\frac{52087134}{15631589}a^{11}-\frac{38167980}{15631589}a^{10}-\frac{1520619884}{15631589}a^{9}+\frac{635331147}{15631589}a^{8}+\frac{14907341181}{15631589}a^{7}-\frac{2109211218}{15631589}a^{6}-\frac{54027528825}{15631589}a^{5}-\frac{1478748531}{15631589}a^{4}+\frac{55813076286}{15631589}a^{3}+\frac{2401280940}{15631589}a^{2}-\frac{13835512481}{15631589}a+\frac{2527934442}{15631589}$, $\frac{29903716}{15631589}a^{11}-\frac{20518030}{15631589}a^{10}-\frac{873695472}{15631589}a^{9}+\frac{323946008}{15631589}a^{8}+\frac{8565750318}{15631589}a^{7}-\frac{813025594}{15631589}a^{6}-\frac{30978725412}{15631589}a^{5}-\frac{2250119387}{15631589}a^{4}+\frac{31664306134}{15631589}a^{3}+\frac{2644448845}{15631589}a^{2}-\frac{7541835225}{15631589}a+\frac{1266708454}{15631589}$, $\frac{7170953}{31263178}a^{11}-\frac{1466997}{15631589}a^{10}-\frac{209806297}{31263178}a^{9}+\frac{9298783}{15631589}a^{8}+\frac{2044371017}{31263178}a^{7}+\frac{393417207}{31263178}a^{6}-\frac{3589809157}{15631589}a^{5}-\frac{1344054500}{15631589}a^{4}+\frac{3195201494}{15631589}a^{3}+\frac{2830506387}{31263178}a^{2}-\frac{365069842}{15631589}a-\frac{80348804}{15631589}$, $\frac{119832423}{31263178}a^{11}-\frac{41523303}{15631589}a^{10}-\frac{3501272919}{31263178}a^{9}+\frac{661459750}{15631589}a^{8}+\frac{34335802023}{31263178}a^{7}-\frac{3504641147}{31263178}a^{6}-\frac{62147072557}{15631589}a^{5}-\frac{4070547651}{15631589}a^{4}+\frac{63747962124}{15631589}a^{3}+\frac{9825846895}{31263178}a^{2}-\frac{15318955326}{15631589}a+\frac{2593246229}{15631589}$, $\frac{119832423}{31263178}a^{11}-\frac{41523303}{15631589}a^{10}-\frac{3501272919}{31263178}a^{9}+\frac{661459750}{15631589}a^{8}+\frac{34335802023}{31263178}a^{7}-\frac{3504641147}{31263178}a^{6}-\frac{62147072557}{15631589}a^{5}-\frac{4070547651}{15631589}a^{4}+\frac{63747962124}{15631589}a^{3}+\frac{9825846895}{31263178}a^{2}-\frac{15334586915}{15631589}a+\frac{2593246229}{15631589}$, $\frac{51537789}{31263178}a^{11}-\frac{19116947}{15631589}a^{10}-\frac{1503655121}{31263178}a^{9}+\frac{320683922}{15631589}a^{8}+\frac{14727552743}{31263178}a^{7}-\frac{2198954041}{31263178}a^{6}-\frac{26638612570}{15631589}a^{5}-\frac{572683644}{15631589}a^{4}+\frac{27343971646}{15631589}a^{3}+\frac{2344170577}{31263178}a^{2}-\frac{6643115509}{15631589}a+\frac{1196508773}{15631589}$, $\frac{41234451}{15631589}a^{11}-\frac{31137605}{15631589}a^{10}-\frac{2407998341}{31263178}a^{9}+\frac{530529333}{15631589}a^{8}+\frac{23631311697}{31263178}a^{7}-\frac{1945835533}{15631589}a^{6}-\frac{85956826291}{31263178}a^{5}-\frac{307563543}{31263178}a^{4}+\frac{45045983421}{15631589}a^{3}+\frac{835635898}{15631589}a^{2}-\frac{11659311157}{15631589}a+\frac{4469765909}{31263178}$, $\frac{2027547}{332587}a^{11}-\frac{2912511}{665174}a^{10}-\frac{118382385}{665174}a^{9}+\frac{47680763}{665174}a^{8}+\frac{1160014045}{665174}a^{7}-\frac{146130441}{665174}a^{6}-\frac{2098183371}{332587}a^{5}-\frac{182962609}{665174}a^{4}+\frac{2150977960}{332587}a^{3}+\frac{130144252}{332587}a^{2}-\frac{1040671817}{665174}a+\frac{180260617}{665174}$, $\frac{230451815}{31263178}a^{11}-\frac{156795775}{31263178}a^{10}-\frac{3364624707}{15631589}a^{9}+\frac{2452192007}{31263178}a^{8}+\frac{32945750624}{15631589}a^{7}-\frac{2883778238}{15631589}a^{6}-\frac{118757005391}{15631589}a^{5}-\frac{19478250669}{31263178}a^{4}+\frac{119875091575}{15631589}a^{3}+\frac{23451981941}{31263178}a^{2}-\frac{55061178305}{31263178}a+\frac{8758264623}{31263178}$, $\frac{1427097}{31263178}a^{11}-\frac{1236349}{31263178}a^{10}-\frac{41056409}{31263178}a^{9}+\frac{21132401}{31263178}a^{8}+\frac{392700729}{31263178}a^{7}-\frac{37563879}{15631589}a^{6}-\frac{1344063031}{31263178}a^{5}-\frac{25002631}{15631589}a^{4}+\frac{557701706}{15631589}a^{3}+\frac{185906687}{31263178}a^{2}-\frac{76676625}{31263178}a-\frac{9699930}{15631589}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 756757.5012453796 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 756757.5012453796 \cdot 1}{2\cdot\sqrt{30850000558264402577}}\cr\approx \mathstrut & 0.279035268228827 \end{aligned}\]
Galois group
$C_3:C_{12}$ (as 12T19):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_3\times (C_3 : C_4)$ |
Character table for $C_3\times (C_3 : C_4)$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.4.4913.1, 6.6.79241777.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 36 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.1.0.1}{1} }^{12}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(127\) | 127.6.4.2 | $x^{6} - 16002 x^{3} + 48387$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
127.6.0.1 | $x^{6} + 84 x^{3} + 115 x^{2} + 82 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.17.2t1.a.a | $1$ | $ 17 $ | \(\Q(\sqrt{17}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.2159.6t1.a.a | $1$ | $ 17 \cdot 127 $ | 6.6.1278090621233.3 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.127.3t1.a.a | $1$ | $ 127 $ | 3.3.16129.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.127.3t1.a.b | $1$ | $ 127 $ | 3.3.16129.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.2159.6t1.a.b | $1$ | $ 17 \cdot 127 $ | 6.6.1278090621233.3 | $C_6$ (as 6T1) | $0$ | $1$ | |
* | 1.17.4t1.a.a | $1$ | $ 17 $ | 4.4.4913.1 | $C_4$ (as 4T1) | $0$ | $1$ |
* | 1.17.4t1.a.b | $1$ | $ 17 $ | 4.4.4913.1 | $C_4$ (as 4T1) | $0$ | $1$ |
1.2159.12t1.a.a | $1$ | $ 17 \cdot 127 $ | 12.12.8025462320079492591473139857.2 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.2159.12t1.a.b | $1$ | $ 17 \cdot 127 $ | 12.12.8025462320079492591473139857.2 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.2159.12t1.a.c | $1$ | $ 17 \cdot 127 $ | 12.12.8025462320079492591473139857.2 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.2159.12t1.a.d | $1$ | $ 17 \cdot 127 $ | 12.12.8025462320079492591473139857.2 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
2.274193.3t2.a.a | $2$ | $ 17 \cdot 127^{2}$ | 3.3.274193.1 | $S_3$ (as 3T2) | $1$ | $2$ | |
2.4661281.12t5.a.a | $2$ | $ 17^{2} \cdot 127^{2}$ | 12.12.8025462320079492591473139857.1 | $C_3 : C_4$ (as 12T5) | $-1$ | $2$ | |
* | 2.2159.6t5.a.a | $2$ | $ 17 \cdot 127 $ | 6.6.79241777.1 | $S_3\times C_3$ (as 6T5) | $0$ | $2$ |
* | 2.36703.12t19.a.a | $2$ | $ 17^{2} \cdot 127 $ | 12.12.30850000558264402577.1 | $C_3\times (C_3 : C_4)$ (as 12T19) | $0$ | $2$ |
* | 2.2159.6t5.a.b | $2$ | $ 17 \cdot 127 $ | 6.6.79241777.1 | $S_3\times C_3$ (as 6T5) | $0$ | $2$ |
* | 2.36703.12t19.a.b | $2$ | $ 17^{2} \cdot 127 $ | 12.12.30850000558264402577.1 | $C_3\times (C_3 : C_4)$ (as 12T19) | $0$ | $2$ |