Normalized defining polynomial
\( x^{12} - x^{11} - 31 x^{10} + 28 x^{9} + 292 x^{8} - 208 x^{7} - 946 x^{6} + 596 x^{5} + 1123 x^{4} - 672 x^{3} - 369 x^{2} + 215 x + 1 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2995508600908518877=7^{10}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(64,·)$, $\chi_{91}(1,·)$, $\chi_{91}(34,·)$, $\chi_{91}(5,·)$, $\chi_{91}(73,·)$, $\chi_{91}(83,·)$, $\chi_{91}(79,·)$, $\chi_{91}(51,·)$, $\chi_{91}(53,·)$, $\chi_{91}(25,·)$, $\chi_{91}(47,·)$, $\chi_{91}(31,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{29} a^{9} - \frac{9}{29} a^{8} - \frac{8}{29} a^{7} + \frac{8}{29} a^{6} + \frac{9}{29} a^{5} - \frac{10}{29} a^{4} + \frac{3}{29} a^{3} - \frac{9}{29} a^{2} + \frac{5}{29} a + \frac{10}{29}$, $\frac{1}{29} a^{10} - \frac{2}{29} a^{8} - \frac{6}{29} a^{7} - \frac{6}{29} a^{6} + \frac{13}{29} a^{5} - \frac{11}{29} a^{3} + \frac{11}{29} a^{2} - \frac{3}{29} a + \frac{3}{29}$, $\frac{1}{3315782947} a^{11} - \frac{43686107}{3315782947} a^{10} - \frac{37385721}{3315782947} a^{9} + \frac{1373323689}{3315782947} a^{8} - \frac{455105222}{3315782947} a^{7} - \frac{534723502}{3315782947} a^{6} + \frac{708066239}{3315782947} a^{5} + \frac{1070724482}{3315782947} a^{4} - \frac{1169660929}{3315782947} a^{3} + \frac{1054936802}{3315782947} a^{2} - \frac{397651250}{3315782947} a - \frac{174510159}{3315782947}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 204760.951816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{7})^+\), 4.4.107653.1, 6.6.5274997.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |