Normalized defining polynomial
\( x^{12} - 323x^{10} + 30362x^{8} - 862087x^{6} + 10432900x^{4} - 56754976x^{2} + 113509952 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(2978079245004918582489485312\) \(\medspace = 2^{12}\cdot 17^{9}\cdot 19^{10}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(194.76\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 17^{3/4}19^{5/6}\approx 194.75772260536294$ | ||
Ramified primes: | \(2\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1292=2^{2}\cdot 17\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1292}(1,·)$, $\chi_{1292}(259,·)$, $\chi_{1292}(1189,·)$, $\chi_{1292}(455,·)$, $\chi_{1292}(939,·)$, $\chi_{1292}(273,·)$, $\chi_{1292}(305,·)$, $\chi_{1292}(531,·)$, $\chi_{1292}(885,·)$, $\chi_{1292}(577,·)$, $\chi_{1292}(183,·)$, $\chi_{1292}(863,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{17}a^{4}$, $\frac{1}{17}a^{5}$, $\frac{1}{323}a^{6}$, $\frac{1}{646}a^{7}-\frac{1}{34}a^{5}-\frac{1}{2}a$, $\frac{1}{153748}a^{8}+\frac{5}{9044}a^{6}+\frac{1}{238}a^{4}-\frac{5}{28}a^{2}+\frac{3}{7}$, $\frac{1}{307496}a^{9}+\frac{5}{18088}a^{7}-\frac{13}{476}a^{5}-\frac{5}{56}a^{3}+\frac{3}{14}a$, $\frac{1}{51044336}a^{10}+\frac{129}{51044336}a^{8}+\frac{1319}{1501304}a^{6}+\frac{25}{1904}a^{4}-\frac{551}{1162}a^{2}+\frac{75}{581}$, $\frac{1}{102088672}a^{11}+\frac{129}{102088672}a^{9}+\frac{1319}{3002608}a^{7}-\frac{87}{3808}a^{5}+\frac{611}{2324}a^{3}+\frac{75}{1162}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{183}{750652}a^{10}-\frac{244390}{3190271}a^{8}+\frac{37983}{5644}a^{6}-\frac{71931}{476}a^{4}+\frac{2828031}{2324}a^{2}-\frac{1829853}{581}$, $\frac{9683}{51044336}a^{10}-\frac{3042657}{51044336}a^{8}+\frac{59111}{11288}a^{6}-\frac{223885}{1904}a^{4}+\frac{2200559}{2324}a^{2}-\frac{1422396}{581}$, $\frac{8103}{51044336}a^{10}-\frac{2546289}{51044336}a^{8}+\frac{940003}{214472}a^{6}-\frac{187489}{1904}a^{4}+\frac{461596}{581}a^{2}-\frac{1197608}{581}$, $\frac{5827}{12761084}a^{10}-\frac{457757}{3190271}a^{8}+\frac{1351801}{107236}a^{6}-\frac{134763}{476}a^{4}+\frac{5301887}{2324}a^{2}-\frac{3433756}{581}$, $\frac{194}{455753}a^{10}-\frac{3586}{26809}a^{8}+\frac{315062}{26809}a^{6}-264a^{4}+\frac{176704}{83}a^{2}-\frac{458839}{83}$, $\frac{3909}{25522168}a^{11}-\frac{22801}{51044336}a^{10}-\frac{1228447}{25522168}a^{9}+\frac{1023441}{7292048}a^{8}+\frac{453561}{107236}a^{7}-\frac{18508635}{1501304}a^{6}-\frac{90495}{952}a^{5}+\frac{527031}{1904}a^{4}+\frac{890987}{1162}a^{3}-\frac{1295353}{581}a^{2}-\frac{2312055}{1162}a+\frac{3353838}{581}$, $\frac{1467}{14584096}a^{11}-\frac{271}{614992}a^{10}-\frac{3205107}{102088672}a^{9}+\frac{84649}{614992}a^{8}+\frac{8146491}{3002608}a^{7}-\frac{30795}{2584}a^{6}-\frac{218667}{3808}a^{5}+\frac{483627}{1904}a^{4}+\frac{1029589}{2324}a^{3}-\frac{13775}{7}a^{2}-\frac{649217}{581}a+\frac{34773}{7}$, $\frac{45423}{14584096}a^{11}+\frac{469407}{51044336}a^{10}-\frac{99922675}{102088672}a^{9}-\frac{8677385}{3002608}a^{8}+\frac{258255521}{3002608}a^{7}+\frac{381257549}{1501304}a^{6}-\frac{7362231}{3808}a^{5}-\frac{1552607}{272}a^{4}+\frac{72499697}{4648}a^{3}+\frac{26754269}{581}a^{2}-\frac{47009859}{1162}a-\frac{69382443}{581}$, $\frac{6033}{51044336}a^{11}-\frac{4189}{51044336}a^{10}-\frac{1895505}{51044336}a^{9}+\frac{1316495}{51044336}a^{8}+\frac{144007}{44156}a^{7}-\frac{3402317}{1501304}a^{6}-\frac{139283}{1904}a^{5}+\frac{96931}{1904}a^{4}+\frac{2734801}{4648}a^{3}-\frac{951445}{2324}a^{2}-\frac{883244}{581}a+\frac{612520}{581}$, $\frac{699}{25522168}a^{11}-\frac{613}{6380542}a^{10}-\frac{5689}{671636}a^{9}+\frac{22437}{750652}a^{8}+\frac{1072145}{1501304}a^{7}-\frac{1921377}{750652}a^{6}-\frac{12811}{952}a^{5}+\frac{6158}{119}a^{4}+\frac{333013}{4648}a^{3}-\frac{775059}{2324}a^{2}-\frac{2155}{83}a+\frac{41342}{83}$, $\frac{286605}{25522168}a^{11}-\frac{106910}{3190271}a^{10}-\frac{45025951}{12761084}a^{9}+\frac{134365521}{12761084}a^{8}+\frac{465272743}{1501304}a^{7}-\frac{99175749}{107236}a^{6}-\frac{6620561}{952}a^{5}+\frac{4939287}{238}a^{4}+\frac{260169671}{4648}a^{3}-\frac{388204645}{2324}a^{2}-\frac{24051471}{166}a+\frac{251215374}{581}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1286540325.1688519 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 1286540325.1688519 \cdot 4}{2\cdot\sqrt{2978079245004918582489485312}}\cr\approx \mathstrut & 0.193127990607122 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.361.1, 4.4.28377488.2, 6.6.640267073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | 19.6.5.5 | $x^{6} + 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
19.6.5.5 | $x^{6} + 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |