Normalized defining polynomial
\( x^{12} - 5526 x^{10} - 11000 x^{9} + 11072751 x^{8} + 48056976 x^{7} - 9806288196 x^{6} - 66045530544 x^{5} + 3652512071076 x^{4} + 32827558924192 x^{3} - 401077519158720 x^{2} - 3666673786739256 x + 5270752514492878 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(273644380620093450686292199131386889530712784896=2^{32}\cdot 3^{12}\cdot 337^{4}\cdot 310501^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8976.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 337, 310501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{985678598339832661686396681933955284128914571457240756903869792839956} a^{11} + \frac{48547815486620616490534752127952089899264681575794355204143484093141}{985678598339832661686396681933955284128914571457240756903869792839956} a^{10} - \frac{158197683913685928886366839914886347833055975509469244835512666450461}{985678598339832661686396681933955284128914571457240756903869792839956} a^{9} - \frac{39119729772956975868247761329444792356941911280230725682348567215231}{328559532779944220562132227311318428042971523819080252301289930946652} a^{8} - \frac{337291335351412568834777146693520577613204529256432405415260399841}{54759922129990703427022037885219738007161920636513375383548321824442} a^{7} - \frac{18904574850590731397596387724436318623618328249068080677397070120423}{164279766389972110281066113655659214021485761909540126150644965473326} a^{6} + \frac{32738204992985751756777082056781356628541917949903941352337684829967}{164279766389972110281066113655659214021485761909540126150644965473326} a^{5} + \frac{20946163850828709792979101686346060616956223784702938012663578877385}{54759922129990703427022037885219738007161920636513375383548321824442} a^{4} + \frac{52265638186905312914472363277110914149625158613384908143469835567951}{164279766389972110281066113655659214021485761909540126150644965473326} a^{3} - \frac{205875409927210967727491299370073839410419200014553142026319203400661}{492839299169916330843198340966977642064457285728620378451934896419978} a^{2} - \frac{11305467892337746861185163829695189629201080900729575979847787195049}{492839299169916330843198340966977642064457285728620378451934896419978} a + \frac{109361131686897700677171175417287015437851209029374318010448144261479}{492839299169916330843198340966977642064457285728620378451934896419978}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110704913560000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{11}$ (as 12T272):
| A non-solvable group of order 7920 |
| The 10 conjugacy class representatives for $M_{11}$ |
| Character table for $M_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.5 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ |
| 2.8.24.66 | $x^{8} + 20 x^{4} + 52$ | $8$ | $1$ | $24$ | $QD_{16}$ | $[2, 3, 4]^{2}$ | |
| $3$ | 3.12.12.27 | $x^{12} - 12 x^{11} + 3 x^{10} - 9 x^{9} + 3 x^{8} + 3 x^{7} + 6 x^{6} + 9 x^{3} + 9 x + 9$ | $6$ | $2$ | $12$ | 12T47 | $[5/4, 5/4]_{4}^{2}$ |
| 337 | Data not computed | ||||||
| 310501 | Data not computed | ||||||