Normalized defining polynomial
\( x^{12} - x^{11} - 100 x^{10} + 99 x^{9} + 3340 x^{8} - 2877 x^{7} - 46644 x^{6} + 33812 x^{5} + \cdots + 16999 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(22734163157293282124804657\) \(\medspace = 17^{9}\cdot 61^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(129.73\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $17^{3/4}61^{2/3}\approx 129.73482819609035$ | ||
Ramified primes: | \(17\), \(61\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1037=17\cdot 61\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1037}(1,·)$, $\chi_{1037}(611,·)$, $\chi_{1037}(135,·)$, $\chi_{1037}(169,·)$, $\chi_{1037}(684,·)$, $\chi_{1037}(13,·)$, $\chi_{1037}(718,·)$, $\chi_{1037}(47,·)$, $\chi_{1037}(562,·)$, $\chi_{1037}(596,·)$, $\chi_{1037}(489,·)$, $\chi_{1037}(123,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{6}a^{9}-\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{2}a^{6}+\frac{1}{3}a^{5}-\frac{1}{2}a^{4}-\frac{1}{6}a^{3}+\frac{1}{6}a^{2}+\frac{1}{6}a+\frac{1}{6}$, $\frac{1}{6}a^{10}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{6}$, $\frac{1}{57\!\cdots\!86}a^{11}+\frac{18\!\cdots\!63}{57\!\cdots\!86}a^{10}+\frac{41\!\cdots\!15}{57\!\cdots\!86}a^{9}-\frac{57\!\cdots\!93}{57\!\cdots\!86}a^{8}-\frac{10\!\cdots\!76}{95\!\cdots\!81}a^{7}-\frac{64\!\cdots\!13}{57\!\cdots\!86}a^{6}+\frac{67\!\cdots\!77}{19\!\cdots\!62}a^{5}-\frac{99\!\cdots\!17}{57\!\cdots\!86}a^{4}+\frac{13\!\cdots\!61}{57\!\cdots\!86}a^{3}-\frac{23\!\cdots\!03}{57\!\cdots\!86}a^{2}-\frac{24\!\cdots\!04}{28\!\cdots\!43}a-\frac{48\!\cdots\!21}{32\!\cdots\!87}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{98\!\cdots\!63}{19\!\cdots\!62}a^{11}-\frac{12\!\cdots\!81}{19\!\cdots\!62}a^{10}-\frac{45\!\cdots\!32}{95\!\cdots\!81}a^{9}+\frac{51\!\cdots\!93}{95\!\cdots\!81}a^{8}+\frac{25\!\cdots\!21}{19\!\cdots\!62}a^{7}-\frac{90\!\cdots\!40}{95\!\cdots\!81}a^{6}-\frac{21\!\cdots\!19}{19\!\cdots\!62}a^{5}-\frac{31\!\cdots\!54}{95\!\cdots\!81}a^{4}-\frac{10\!\cdots\!45}{95\!\cdots\!81}a^{3}+\frac{10\!\cdots\!62}{95\!\cdots\!81}a^{2}+\frac{41\!\cdots\!13}{19\!\cdots\!62}a-\frac{60\!\cdots\!23}{21\!\cdots\!58}$, $\frac{20\!\cdots\!36}{95\!\cdots\!81}a^{11}-\frac{15\!\cdots\!66}{95\!\cdots\!81}a^{10}-\frac{19\!\cdots\!74}{95\!\cdots\!81}a^{9}+\frac{14\!\cdots\!22}{95\!\cdots\!81}a^{8}+\frac{63\!\cdots\!16}{95\!\cdots\!81}a^{7}-\frac{36\!\cdots\!84}{95\!\cdots\!81}a^{6}-\frac{83\!\cdots\!60}{95\!\cdots\!81}a^{5}+\frac{31\!\cdots\!63}{95\!\cdots\!81}a^{4}+\frac{43\!\cdots\!12}{95\!\cdots\!81}a^{3}-\frac{11\!\cdots\!47}{95\!\cdots\!81}a^{2}-\frac{72\!\cdots\!47}{95\!\cdots\!81}a+\frac{18\!\cdots\!85}{10\!\cdots\!29}$, $\frac{50\!\cdots\!35}{19\!\cdots\!62}a^{11}-\frac{44\!\cdots\!13}{19\!\cdots\!62}a^{10}-\frac{24\!\cdots\!06}{95\!\cdots\!81}a^{9}+\frac{20\!\cdots\!15}{95\!\cdots\!81}a^{8}+\frac{15\!\cdots\!53}{19\!\cdots\!62}a^{7}-\frac{45\!\cdots\!24}{95\!\cdots\!81}a^{6}-\frac{18\!\cdots\!39}{19\!\cdots\!62}a^{5}+\frac{28\!\cdots\!09}{95\!\cdots\!81}a^{4}+\frac{42\!\cdots\!67}{95\!\cdots\!81}a^{3}-\frac{96\!\cdots\!85}{95\!\cdots\!81}a^{2}-\frac{10\!\cdots\!81}{19\!\cdots\!62}a-\frac{18\!\cdots\!95}{21\!\cdots\!58}$, $\frac{89\!\cdots\!22}{28\!\cdots\!43}a^{11}+\frac{23\!\cdots\!45}{57\!\cdots\!86}a^{10}-\frac{10\!\cdots\!10}{28\!\cdots\!43}a^{9}-\frac{36\!\cdots\!95}{95\!\cdots\!81}a^{8}+\frac{46\!\cdots\!52}{28\!\cdots\!43}a^{7}+\frac{66\!\cdots\!83}{57\!\cdots\!86}a^{6}-\frac{16\!\cdots\!73}{57\!\cdots\!86}a^{5}-\frac{37\!\cdots\!74}{28\!\cdots\!43}a^{4}+\frac{60\!\cdots\!32}{28\!\cdots\!43}a^{3}+\frac{12\!\cdots\!92}{28\!\cdots\!43}a^{2}-\frac{42\!\cdots\!18}{95\!\cdots\!81}a-\frac{12\!\cdots\!83}{64\!\cdots\!74}$, $\frac{28\!\cdots\!95}{57\!\cdots\!86}a^{11}-\frac{33\!\cdots\!24}{28\!\cdots\!43}a^{10}-\frac{48\!\cdots\!69}{95\!\cdots\!81}a^{9}+\frac{32\!\cdots\!46}{28\!\cdots\!43}a^{8}+\frac{10\!\cdots\!57}{57\!\cdots\!86}a^{7}-\frac{62\!\cdots\!69}{19\!\cdots\!62}a^{6}-\frac{75\!\cdots\!07}{28\!\cdots\!43}a^{5}+\frac{10\!\cdots\!37}{28\!\cdots\!43}a^{4}+\frac{15\!\cdots\!18}{95\!\cdots\!81}a^{3}-\frac{49\!\cdots\!78}{28\!\cdots\!43}a^{2}-\frac{19\!\cdots\!37}{57\!\cdots\!86}a+\frac{92\!\cdots\!77}{32\!\cdots\!87}$, $\frac{15\!\cdots\!37}{57\!\cdots\!86}a^{11}-\frac{10\!\cdots\!73}{28\!\cdots\!43}a^{10}-\frac{13\!\cdots\!99}{57\!\cdots\!86}a^{9}+\frac{68\!\cdots\!81}{19\!\cdots\!62}a^{8}+\frac{16\!\cdots\!81}{28\!\cdots\!43}a^{7}-\frac{10\!\cdots\!03}{95\!\cdots\!81}a^{6}-\frac{10\!\cdots\!63}{28\!\cdots\!43}a^{5}+\frac{68\!\cdots\!25}{57\!\cdots\!86}a^{4}-\frac{11\!\cdots\!61}{57\!\cdots\!86}a^{3}-\frac{22\!\cdots\!01}{57\!\cdots\!86}a^{2}+\frac{21\!\cdots\!37}{95\!\cdots\!81}a+\frac{13\!\cdots\!21}{21\!\cdots\!58}$, $\frac{71\!\cdots\!32}{95\!\cdots\!81}a^{11}-\frac{48\!\cdots\!09}{95\!\cdots\!81}a^{10}-\frac{13\!\cdots\!87}{19\!\cdots\!62}a^{9}+\frac{11\!\cdots\!47}{19\!\cdots\!62}a^{8}+\frac{43\!\cdots\!77}{19\!\cdots\!62}a^{7}+\frac{12\!\cdots\!25}{19\!\cdots\!62}a^{6}-\frac{26\!\cdots\!80}{95\!\cdots\!81}a^{5}-\frac{84\!\cdots\!33}{19\!\cdots\!62}a^{4}+\frac{20\!\cdots\!53}{19\!\cdots\!62}a^{3}+\frac{43\!\cdots\!25}{19\!\cdots\!62}a^{2}-\frac{12\!\cdots\!75}{19\!\cdots\!62}a-\frac{18\!\cdots\!75}{21\!\cdots\!58}$, $\frac{50\!\cdots\!01}{57\!\cdots\!86}a^{11}+\frac{13\!\cdots\!74}{28\!\cdots\!43}a^{10}-\frac{24\!\cdots\!26}{28\!\cdots\!43}a^{9}-\frac{13\!\cdots\!01}{28\!\cdots\!43}a^{8}+\frac{15\!\cdots\!53}{57\!\cdots\!86}a^{7}+\frac{10\!\cdots\!39}{57\!\cdots\!86}a^{6}-\frac{33\!\cdots\!86}{95\!\cdots\!81}a^{5}-\frac{23\!\cdots\!59}{95\!\cdots\!81}a^{4}+\frac{15\!\cdots\!68}{95\!\cdots\!81}a^{3}+\frac{20\!\cdots\!76}{28\!\cdots\!43}a^{2}-\frac{15\!\cdots\!13}{57\!\cdots\!86}a-\frac{26\!\cdots\!20}{32\!\cdots\!87}$, $\frac{36\!\cdots\!07}{57\!\cdots\!86}a^{11}-\frac{11\!\cdots\!94}{28\!\cdots\!43}a^{10}-\frac{11\!\cdots\!57}{19\!\cdots\!62}a^{9}+\frac{73\!\cdots\!57}{57\!\cdots\!86}a^{8}+\frac{58\!\cdots\!91}{28\!\cdots\!43}a^{7}-\frac{20\!\cdots\!44}{28\!\cdots\!43}a^{6}-\frac{80\!\cdots\!04}{28\!\cdots\!43}a^{5}+\frac{24\!\cdots\!97}{19\!\cdots\!62}a^{4}+\frac{92\!\cdots\!33}{57\!\cdots\!86}a^{3}-\frac{53\!\cdots\!31}{57\!\cdots\!86}a^{2}-\frac{30\!\cdots\!58}{95\!\cdots\!81}a+\frac{15\!\cdots\!97}{64\!\cdots\!74}$, $\frac{45\!\cdots\!15}{57\!\cdots\!86}a^{11}-\frac{44\!\cdots\!21}{95\!\cdots\!81}a^{10}-\frac{14\!\cdots\!93}{19\!\cdots\!62}a^{9}+\frac{24\!\cdots\!89}{57\!\cdots\!86}a^{8}+\frac{21\!\cdots\!55}{95\!\cdots\!81}a^{7}-\frac{11\!\cdots\!56}{95\!\cdots\!81}a^{6}-\frac{64\!\cdots\!40}{28\!\cdots\!43}a^{5}+\frac{65\!\cdots\!03}{57\!\cdots\!86}a^{4}+\frac{18\!\cdots\!67}{57\!\cdots\!86}a^{3}-\frac{19\!\cdots\!03}{57\!\cdots\!86}a^{2}+\frac{53\!\cdots\!41}{28\!\cdots\!43}a+\frac{18\!\cdots\!53}{21\!\cdots\!58}$, $\frac{19\!\cdots\!05}{57\!\cdots\!86}a^{11}-\frac{78\!\cdots\!89}{95\!\cdots\!81}a^{10}-\frac{88\!\cdots\!27}{28\!\cdots\!43}a^{9}+\frac{22\!\cdots\!68}{28\!\cdots\!43}a^{8}+\frac{50\!\cdots\!25}{57\!\cdots\!86}a^{7}-\frac{41\!\cdots\!79}{19\!\cdots\!62}a^{6}-\frac{84\!\cdots\!89}{95\!\cdots\!81}a^{5}+\frac{63\!\cdots\!61}{28\!\cdots\!43}a^{4}+\frac{52\!\cdots\!74}{28\!\cdots\!43}a^{3}-\frac{18\!\cdots\!00}{28\!\cdots\!43}a^{2}+\frac{60\!\cdots\!83}{19\!\cdots\!62}a+\frac{47\!\cdots\!60}{32\!\cdots\!87}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 319721807.832 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 319721807.832 \cdot 1}{2\cdot\sqrt{22734163157293282124804657}}\cr\approx \mathstrut & 0.137329148115 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.3721.1, 4.4.4913.1, 6.6.68024616833.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{3}$ | ${\href{/padicField/5.12.0.1}{12} }$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.4.0.1}{4} }^{3}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(61\) | 61.12.8.1 | $x^{12} + 9 x^{10} + 364 x^{9} + 33 x^{8} + 720 x^{7} - 16731 x^{6} - 1002 x^{5} - 64041 x^{4} - 1125646 x^{3} + 428523 x^{2} - 4549998 x + 62837938$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |