Properties

Label 12.12.2235802681...3504.1
Degree $12$
Signature $[12, 0]$
Discriminant $2^{18}\cdot 31^{8}$
Root discriminant $27.91$
Ramified primes $2, 31$
Class number $1$
Class group Trivial
Galois group $A_4$ (as 12T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-373, 602, 1207, -2170, -467, 1896, -300, -604, 183, 70, -27, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 27*x^10 + 70*x^9 + 183*x^8 - 604*x^7 - 300*x^6 + 1896*x^5 - 467*x^4 - 2170*x^3 + 1207*x^2 + 602*x - 373)
 
gp: K = bnfinit(x^12 - 2*x^11 - 27*x^10 + 70*x^9 + 183*x^8 - 604*x^7 - 300*x^6 + 1896*x^5 - 467*x^4 - 2170*x^3 + 1207*x^2 + 602*x - 373, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} - 27 x^{10} + 70 x^{9} + 183 x^{8} - 604 x^{7} - 300 x^{6} + 1896 x^{5} - 467 x^{4} - 2170 x^{3} + 1207 x^{2} + 602 x - 373 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(223580268118933504=2^{18}\cdot 31^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{48} a^{10} - \frac{1}{12} a^{9} - \frac{1}{24} a^{8} + \frac{1}{8} a^{7} - \frac{7}{48} a^{6} - \frac{1}{6} a^{5} + \frac{5}{48} a^{4} - \frac{1}{24} a^{3} - \frac{3}{8} a^{2} - \frac{1}{6} a - \frac{19}{48}$, $\frac{1}{39888} a^{11} - \frac{37}{13296} a^{10} - \frac{481}{6648} a^{9} - \frac{1115}{9972} a^{8} - \frac{2305}{39888} a^{7} + \frac{149}{4432} a^{6} - \frac{625}{13296} a^{5} + \frac{759}{4432} a^{4} - \frac{533}{9972} a^{3} - \frac{9541}{19944} a^{2} - \frac{1001}{13296} a - \frac{11119}{39888}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 86712.0400607 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4$ (as 12T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 4 conjugacy class representatives for $A_4$
Character table for $A_4$

Intermediate fields

3.3.961.1, 4.4.61504.1 x4, 6.6.59105344.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 sibling: data not computed
Degree 6 sibling: 6.6.59105344.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$31$31.3.2.1$x^{3} - 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} - 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} - 31$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.1$x^{3} - 31$$3$$1$$2$$C_3$$[\ ]_{3}$