Normalized defining polynomial
\( x^{12} - 4 x^{11} - 104 x^{10} + 364 x^{9} + 4239 x^{8} - 12292 x^{7} - 86658 x^{6} + 191056 x^{5} + \cdots + 10118401 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[12, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(179210946875957470035968\) \(\medspace = 2^{18}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(86.65\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}7^{2/3}17^{3/4}\approx 86.6523565155333$ | ||
Ramified primes: | \(2\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(952=2^{3}\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{952}(1,·)$, $\chi_{952}(837,·)$, $\chi_{952}(849,·)$, $\chi_{952}(137,·)$, $\chi_{952}(429,·)$, $\chi_{952}(557,·)$, $\chi_{952}(305,·)$, $\chi_{952}(149,·)$, $\chi_{952}(681,·)$, $\chi_{952}(169,·)$, $\chi_{952}(701,·)$, $\chi_{952}(421,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{12182524}a^{10}-\frac{14322}{3045631}a^{9}-\frac{578503}{3045631}a^{8}+\frac{1692969}{12182524}a^{7}-\frac{688085}{6091262}a^{6}-\frac{1181959}{12182524}a^{5}-\frac{274419}{6091262}a^{4}+\frac{2281489}{6091262}a^{3}-\frac{3402713}{12182524}a^{2}-\frac{2420597}{12182524}a-\frac{5256713}{12182524}$, $\frac{1}{63\!\cdots\!56}a^{11}+\frac{12131242177}{63\!\cdots\!56}a^{10}+\frac{18\!\cdots\!37}{63\!\cdots\!56}a^{9}-\frac{60\!\cdots\!57}{15\!\cdots\!39}a^{8}+\frac{33\!\cdots\!25}{15\!\cdots\!39}a^{7}+\frac{48\!\cdots\!39}{63\!\cdots\!56}a^{6}-\frac{18\!\cdots\!51}{63\!\cdots\!56}a^{5}-\frac{62\!\cdots\!89}{63\!\cdots\!56}a^{4}+\frac{76\!\cdots\!83}{15\!\cdots\!39}a^{3}-\frac{29\!\cdots\!35}{63\!\cdots\!56}a^{2}+\frac{83\!\cdots\!93}{31\!\cdots\!78}a-\frac{12\!\cdots\!27}{31\!\cdots\!78}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{242139114900}{15\!\cdots\!39}a^{11}-\frac{2837094928350}{15\!\cdots\!39}a^{10}-\frac{15876195420584}{15\!\cdots\!39}a^{9}+\frac{276472880605002}{15\!\cdots\!39}a^{8}+\frac{200557758206448}{15\!\cdots\!39}a^{7}-\frac{99\!\cdots\!50}{15\!\cdots\!39}a^{6}+\frac{47\!\cdots\!52}{15\!\cdots\!39}a^{5}+\frac{16\!\cdots\!59}{15\!\cdots\!39}a^{4}-\frac{10\!\cdots\!84}{15\!\cdots\!39}a^{3}-\frac{11\!\cdots\!12}{15\!\cdots\!39}a^{2}+\frac{41\!\cdots\!00}{15\!\cdots\!39}a+\frac{23\!\cdots\!64}{15\!\cdots\!39}$, $\frac{854191568792}{15\!\cdots\!39}a^{11}-\frac{3592958085288}{15\!\cdots\!39}a^{10}-\frac{76166832114504}{15\!\cdots\!39}a^{9}+\frac{293205885995987}{15\!\cdots\!39}a^{8}+\frac{24\!\cdots\!56}{15\!\cdots\!39}a^{7}-\frac{84\!\cdots\!84}{15\!\cdots\!39}a^{6}-\frac{35\!\cdots\!44}{15\!\cdots\!39}a^{5}+\frac{10\!\cdots\!68}{15\!\cdots\!39}a^{4}+\frac{20\!\cdots\!52}{15\!\cdots\!39}a^{3}-\frac{52\!\cdots\!48}{15\!\cdots\!39}a^{2}-\frac{27\!\cdots\!20}{15\!\cdots\!39}a+\frac{90\!\cdots\!81}{15\!\cdots\!39}$, $\frac{1335844678514}{15\!\cdots\!39}a^{11}-\frac{6368105095400}{15\!\cdots\!39}a^{10}-\frac{124220973777775}{15\!\cdots\!39}a^{9}+\frac{485613912392468}{15\!\cdots\!39}a^{8}+\frac{44\!\cdots\!22}{15\!\cdots\!39}a^{7}-\frac{23\!\cdots\!93}{31\!\cdots\!78}a^{6}-\frac{75\!\cdots\!98}{15\!\cdots\!39}a^{5}+\frac{18\!\cdots\!83}{31\!\cdots\!78}a^{4}+\frac{60\!\cdots\!52}{15\!\cdots\!39}a^{3}+\frac{86\!\cdots\!72}{15\!\cdots\!39}a^{2}-\frac{16\!\cdots\!17}{15\!\cdots\!39}a-\frac{35\!\cdots\!79}{31\!\cdots\!78}$, $\frac{1336409605858}{15\!\cdots\!39}a^{11}-\frac{16639980703621}{15\!\cdots\!39}a^{10}-\frac{88592305417163}{15\!\cdots\!39}a^{9}+\frac{29\!\cdots\!23}{31\!\cdots\!78}a^{8}+\frac{15\!\cdots\!80}{15\!\cdots\!39}a^{7}-\frac{46\!\cdots\!43}{15\!\cdots\!39}a^{6}+\frac{24\!\cdots\!42}{15\!\cdots\!39}a^{5}+\frac{13\!\cdots\!77}{31\!\cdots\!78}a^{4}-\frac{26\!\cdots\!76}{15\!\cdots\!39}a^{3}-\frac{86\!\cdots\!31}{31\!\cdots\!78}a^{2}+\frac{15\!\cdots\!06}{15\!\cdots\!39}a+\frac{19\!\cdots\!31}{31\!\cdots\!78}$, $\frac{614112646626}{15\!\cdots\!39}a^{11}+\frac{6616969604695}{15\!\cdots\!39}a^{10}-\frac{79617554232429}{15\!\cdots\!39}a^{9}-\frac{11\!\cdots\!71}{31\!\cdots\!78}a^{8}+\frac{35\!\cdots\!80}{15\!\cdots\!39}a^{7}+\frac{19\!\cdots\!25}{15\!\cdots\!39}a^{6}-\frac{68\!\cdots\!78}{15\!\cdots\!39}a^{5}-\frac{59\!\cdots\!87}{31\!\cdots\!78}a^{4}+\frac{57\!\cdots\!96}{15\!\cdots\!39}a^{3}+\frac{42\!\cdots\!15}{31\!\cdots\!78}a^{2}-\frac{17\!\cdots\!46}{15\!\cdots\!39}a-\frac{11\!\cdots\!35}{31\!\cdots\!78}$, $\frac{15917259379171}{31\!\cdots\!78}a^{11}-\frac{235701302278325}{63\!\cdots\!56}a^{10}-\frac{25\!\cdots\!11}{63\!\cdots\!56}a^{9}+\frac{20\!\cdots\!93}{63\!\cdots\!56}a^{8}+\frac{36\!\cdots\!63}{31\!\cdots\!78}a^{7}-\frac{32\!\cdots\!95}{31\!\cdots\!78}a^{6}-\frac{83\!\cdots\!21}{63\!\cdots\!56}a^{5}+\frac{91\!\cdots\!31}{63\!\cdots\!56}a^{4}+\frac{32\!\cdots\!39}{63\!\cdots\!56}a^{3}-\frac{28\!\cdots\!17}{31\!\cdots\!78}a^{2}-\frac{14\!\cdots\!23}{63\!\cdots\!56}a+\frac{60\!\cdots\!91}{31\!\cdots\!78}$, $\frac{13539168438611}{31\!\cdots\!78}a^{11}-\frac{10299086213701}{63\!\cdots\!56}a^{10}-\frac{27\!\cdots\!55}{63\!\cdots\!56}a^{9}-\frac{245962426685535}{63\!\cdots\!56}a^{8}+\frac{51\!\cdots\!11}{31\!\cdots\!78}a^{7}+\frac{27\!\cdots\!41}{31\!\cdots\!78}a^{6}-\frac{17\!\cdots\!81}{63\!\cdots\!56}a^{5}-\frac{16\!\cdots\!97}{63\!\cdots\!56}a^{4}+\frac{14\!\cdots\!47}{63\!\cdots\!56}a^{3}+\frac{88\!\cdots\!27}{31\!\cdots\!78}a^{2}-\frac{38\!\cdots\!87}{63\!\cdots\!56}a-\frac{28\!\cdots\!97}{31\!\cdots\!78}$, $\frac{104419444984633}{63\!\cdots\!56}a^{11}+\frac{1805055779862}{15\!\cdots\!39}a^{10}-\frac{10\!\cdots\!19}{63\!\cdots\!56}a^{9}-\frac{20\!\cdots\!59}{31\!\cdots\!78}a^{8}+\frac{35\!\cdots\!77}{63\!\cdots\!56}a^{7}+\frac{24\!\cdots\!73}{63\!\cdots\!56}a^{6}-\frac{27\!\cdots\!35}{31\!\cdots\!78}a^{5}-\frac{48\!\cdots\!97}{63\!\cdots\!56}a^{4}+\frac{19\!\cdots\!21}{31\!\cdots\!78}a^{3}+\frac{98\!\cdots\!12}{15\!\cdots\!39}a^{2}-\frac{92\!\cdots\!43}{63\!\cdots\!56}a-\frac{10\!\cdots\!27}{63\!\cdots\!56}$, $\frac{3610717200177}{63\!\cdots\!56}a^{11}+\frac{4932951030457}{15\!\cdots\!39}a^{10}-\frac{102348520043890}{15\!\cdots\!39}a^{9}-\frac{18\!\cdots\!43}{63\!\cdots\!56}a^{8}+\frac{80\!\cdots\!27}{31\!\cdots\!78}a^{7}+\frac{64\!\cdots\!29}{63\!\cdots\!56}a^{6}-\frac{13\!\cdots\!27}{31\!\cdots\!78}a^{5}-\frac{48\!\cdots\!35}{31\!\cdots\!78}a^{4}+\frac{20\!\cdots\!11}{63\!\cdots\!56}a^{3}+\frac{64\!\cdots\!99}{63\!\cdots\!56}a^{2}-\frac{56\!\cdots\!09}{63\!\cdots\!56}a-\frac{37\!\cdots\!15}{15\!\cdots\!39}$, $\frac{40804442566857}{63\!\cdots\!56}a^{11}-\frac{222935744453477}{63\!\cdots\!56}a^{10}-\frac{990045609526974}{15\!\cdots\!39}a^{9}+\frac{20\!\cdots\!31}{63\!\cdots\!56}a^{8}+\frac{14\!\cdots\!29}{63\!\cdots\!56}a^{7}-\frac{72\!\cdots\!87}{63\!\cdots\!56}a^{6}-\frac{25\!\cdots\!47}{63\!\cdots\!56}a^{5}+\frac{29\!\cdots\!95}{15\!\cdots\!39}a^{4}+\frac{21\!\cdots\!77}{63\!\cdots\!56}a^{3}-\frac{44\!\cdots\!49}{31\!\cdots\!78}a^{2}-\frac{16\!\cdots\!50}{15\!\cdots\!39}a+\frac{24\!\cdots\!93}{63\!\cdots\!56}$, $\frac{132330051360617}{31\!\cdots\!78}a^{11}-\frac{17\!\cdots\!85}{63\!\cdots\!56}a^{10}-\frac{10\!\cdots\!41}{31\!\cdots\!78}a^{9}+\frac{38\!\cdots\!42}{15\!\cdots\!39}a^{8}+\frac{61\!\cdots\!33}{63\!\cdots\!56}a^{7}-\frac{24\!\cdots\!77}{31\!\cdots\!78}a^{6}-\frac{69\!\cdots\!93}{63\!\cdots\!56}a^{5}+\frac{33\!\cdots\!07}{31\!\cdots\!78}a^{4}+\frac{12\!\cdots\!79}{31\!\cdots\!78}a^{3}-\frac{39\!\cdots\!03}{63\!\cdots\!56}a^{2}+\frac{93\!\cdots\!91}{63\!\cdots\!56}a+\frac{79\!\cdots\!61}{63\!\cdots\!56}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 21207640.0343 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 21207640.0343 \cdot 2}{2\cdot\sqrt{179210946875957470035968}}\cr\approx \mathstrut & 0.205196535553 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.314432.1, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.9.3 | $x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
2.6.9.3 | $x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |