Properties

Label 12.12.1657139923...5877.1
Degree $12$
Signature $[12, 0]$
Discriminant $3^{6}\cdot 11^{8}\cdot 13^{9}$
Root discriminant $58.65$
Ramified primes $3, 11, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_3 : C_4$ (as 12T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1249, -20240, 48637, -32763, -12742, 21883, -3952, -3065, 904, 159, -55, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 - 55*x^10 + 159*x^9 + 904*x^8 - 3065*x^7 - 3952*x^6 + 21883*x^5 - 12742*x^4 - 32763*x^3 + 48637*x^2 - 20240*x + 1249)
 
gp: K = bnfinit(x^12 - 3*x^11 - 55*x^10 + 159*x^9 + 904*x^8 - 3065*x^7 - 3952*x^6 + 21883*x^5 - 12742*x^4 - 32763*x^3 + 48637*x^2 - 20240*x + 1249, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} - 55 x^{10} + 159 x^{9} + 904 x^{8} - 3065 x^{7} - 3952 x^{6} + 21883 x^{5} - 12742 x^{4} - 32763 x^{3} + 48637 x^{2} - 20240 x + 1249 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1657139923368720095877=3^{6}\cdot 11^{8}\cdot 13^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4414} a^{10} - \frac{1043}{4414} a^{9} + \frac{999}{4414} a^{8} - \frac{1081}{2207} a^{7} + \frac{171}{4414} a^{6} + \frac{971}{4414} a^{5} - \frac{662}{2207} a^{4} - \frac{1035}{2207} a^{3} + \frac{145}{4414} a^{2} - \frac{1074}{2207} a - \frac{1479}{4414}$, $\frac{1}{67053586558094} a^{11} - \frac{1666102711}{67053586558094} a^{10} - \frac{8894020683337}{67053586558094} a^{9} + \frac{12166305819465}{67053586558094} a^{8} + \frac{148427464039}{67053586558094} a^{7} + \frac{19666797874661}{67053586558094} a^{6} + \frac{12436209379394}{33526793279047} a^{5} - \frac{1868069528053}{67053586558094} a^{4} + \frac{4386776060079}{67053586558094} a^{3} - \frac{28549660592797}{67053586558094} a^{2} + \frac{14672527044389}{33526793279047} a + \frac{19446670449183}{67053586558094}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3563867.34537 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3:C_4$ (as 12T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 12
The 6 conjugacy class representatives for $C_3 : C_4$
Character table for $C_3 : C_4$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.1573.1 x3, 4.4.19773.1, 6.6.32166277.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ R R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.12.8.1$x^{12} - 33 x^{9} + 363 x^{6} - 1331 x^{3} + 117128$$3$$4$$8$$C_3 : C_4$$[\ ]_{3}^{4}$
$13$13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$