Properties

Label 12.12.1592978333...4336.1
Degree $12$
Signature $[12, 0]$
Discriminant $2^{8}\cdot 11^{6}\cdot 37^{8}$
Root discriminant $58.46$
Ramified primes $2, 11, 37$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_3\times A_4$ (as 12T43)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![278, -884, -3462, 2179, 6471, -489, -3194, -128, 601, 41, -43, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 43*x^10 + 41*x^9 + 601*x^8 - 128*x^7 - 3194*x^6 - 489*x^5 + 6471*x^4 + 2179*x^3 - 3462*x^2 - 884*x + 278)
 
gp: K = bnfinit(x^12 - 2*x^11 - 43*x^10 + 41*x^9 + 601*x^8 - 128*x^7 - 3194*x^6 - 489*x^5 + 6471*x^4 + 2179*x^3 - 3462*x^2 - 884*x + 278, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} - 43 x^{10} + 41 x^{9} + 601 x^{8} - 128 x^{7} - 3194 x^{6} - 489 x^{5} + 6471 x^{4} + 2179 x^{3} - 3462 x^{2} - 884 x + 278 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1592978333150141614336=2^{8}\cdot 11^{6}\cdot 37^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{333} a^{9} + \frac{149}{333} a^{8} - \frac{13}{37} a^{7} - \frac{127}{333} a^{6} - \frac{131}{333} a^{5} - \frac{8}{37} a^{4} - \frac{110}{333} a^{3} + \frac{2}{111} a^{2} + \frac{161}{333} a - \frac{19}{333}$, $\frac{1}{333} a^{10} - \frac{7}{333} a^{8} - \frac{10}{333} a^{7} + \frac{16}{37} a^{6} + \frac{133}{333} a^{5} - \frac{38}{333} a^{4} + \frac{79}{333} a^{3} - \frac{67}{333} a^{2} - \frac{32}{333} a - \frac{166}{333}$, $\frac{1}{42068443779} a^{11} + \frac{26450594}{42068443779} a^{10} + \frac{1316194}{14022814593} a^{9} - \frac{12082668388}{42068443779} a^{8} - \frac{9694958264}{42068443779} a^{7} - \frac{119555683}{14022814593} a^{6} - \frac{16423149605}{42068443779} a^{5} - \frac{1210541611}{4674271531} a^{4} + \frac{12976237418}{42068443779} a^{3} + \frac{12227795753}{42068443779} a^{2} - \frac{1171035117}{4674271531} a - \frac{6976730315}{14022814593}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12025487.1319 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times A_4$ (as 12T43):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 12 conjugacy class representatives for $S_3\times A_4$
Character table for $S_3\times A_4$

Intermediate fields

3.3.148.1, 4.4.165649.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed
Degree 24 siblings: data not computed
Degree 36 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.9.6.1$x^{9} - 4 x^{3} + 8$$3$$3$$6$$S_3\times C_3$$[\ ]_{3}^{6}$
$11$11.12.6.1$x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.3.2.1$x^{3} - 37$$3$$1$$2$$C_3$$[\ ]_{3}$
37.6.5.1$x^{6} - 37$$6$$1$$5$$C_6$$[\ ]_{6}$