Properties

Label 12.12.145...792.1
Degree $12$
Signature $[12, 0]$
Discriminant $1.452\times 10^{22}$
Root discriminant \(70.28\)
Ramified primes $2,13,17,29$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $A_5^2:C_4$ (as 12T278)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208)
 
gp: K = bnfinit(y^12 - 2*y^11 - 40*y^10 + 72*y^9 + 482*y^8 - 782*y^7 - 1792*y^6 + 2008*y^5 + 2704*y^4 - 1192*y^3 - 1376*y^2 + 184*y + 208, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208)
 

\( x^{12} - 2 x^{11} - 40 x^{10} + 72 x^{9} + 482 x^{8} - 782 x^{7} - 1792 x^{6} + 2008 x^{5} + 2704 x^{4} + \cdots + 208 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[12, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14515063671969809441792\) \(\medspace = 2^{10}\cdot 13^{2}\cdot 17^{9}\cdot 29^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(70.28\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{37/30}13^{1/2}17^{3/4}29^{1/2}\approx 382.1885695819846$
Ramified primes:   \(2\), \(13\), \(17\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{4}$, $\frac{1}{12}a^{10}+\frac{1}{6}a^{6}+\frac{1}{6}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{1464165960}a^{11}+\frac{5631579}{244027660}a^{10}+\frac{5695707}{122013830}a^{9}+\frac{18267131}{244027660}a^{8}+\frac{162251749}{732082980}a^{7}+\frac{154617043}{732082980}a^{6}+\frac{45526753}{183020745}a^{5}+\frac{93155893}{366041490}a^{4}-\frac{121853491}{366041490}a^{3}-\frac{4650712}{183020745}a^{2}+\frac{28550986}{183020745}a-\frac{16667332}{61006915}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{112393427}{1464165960}a^{11}-\frac{165645161}{732082980}a^{10}-\frac{177428728}{61006915}a^{9}+\frac{2041779467}{244027660}a^{8}+\frac{22801425413}{732082980}a^{7}-\frac{67693602689}{732082980}a^{6}-\frac{27242931523}{366041490}a^{5}+\frac{31141365027}{122013830}a^{4}+\frac{6213719411}{122013830}a^{3}-\frac{12470979993}{61006915}a^{2}-\frac{1080755706}{61006915}a+\frac{7697441423}{183020745}$, $\frac{93335417}{732082980}a^{11}-\frac{44200157}{122013830}a^{10}-\frac{587081097}{122013830}a^{9}+\frac{1616819357}{122013830}a^{8}+\frac{9327284074}{183020745}a^{7}-\frac{26241668867}{183020745}a^{6}-\frac{21143830073}{183020745}a^{5}+\frac{66168487961}{183020745}a^{4}+\frac{12085511458}{183020745}a^{3}-\frac{40786199263}{183020745}a^{2}-\frac{2581742381}{183020745}a+\frac{2327839607}{61006915}$, $\frac{52481369}{183020745}a^{11}-\frac{580582181}{732082980}a^{10}-\frac{2644876107}{244027660}a^{9}+\frac{1763897798}{61006915}a^{8}+\frac{21070612837}{183020745}a^{7}-\frac{18992153522}{61006915}a^{6}-\frac{16161341478}{61006915}a^{5}+\frac{280866317441}{366041490}a^{4}+\frac{28812961124}{183020745}a^{3}-\frac{80400199634}{183020745}a^{2}-\frac{5520127138}{183020745}a+\frac{12898174283}{183020745}$, $\frac{62039921}{1464165960}a^{11}-\frac{66505373}{732082980}a^{10}-\frac{407844611}{244027660}a^{9}+\frac{800137031}{244027660}a^{8}+\frac{14262954929}{732082980}a^{7}-\frac{25846757837}{732082980}a^{6}-\frac{11864015597}{183020745}a^{5}+\frac{5225738548}{61006915}a^{4}+\frac{9922916443}{122013830}a^{3}-\frac{2453895884}{61006915}a^{2}-\frac{1574565628}{61006915}a+\frac{423849989}{183020745}$, $\frac{41299}{1967965}a^{11}-\frac{779971}{7871860}a^{10}-\frac{5861921}{7871860}a^{9}+\frac{15075663}{3935930}a^{8}+\frac{13302612}{1967965}a^{7}-\frac{177450207}{3935930}a^{6}-\frac{3028549}{1967965}a^{5}+\frac{608835251}{3935930}a^{4}-\frac{60486406}{1967965}a^{3}-\frac{358656209}{1967965}a^{2}+\frac{6155382}{1967965}a+\frac{80533483}{1967965}$, $\frac{258111601}{732082980}a^{11}-\frac{545794411}{732082980}a^{10}-\frac{845289023}{61006915}a^{9}+\frac{3252259541}{122013830}a^{8}+\frac{29370827087}{183020745}a^{7}-\frac{17253945577}{61006915}a^{6}-\frac{63948912861}{122013830}a^{5}+\frac{118856726138}{183020745}a^{4}+\frac{113811953749}{183020745}a^{3}-\frac{42653023834}{183020745}a^{2}-\frac{25180886738}{183020745}a+\frac{4549177933}{183020745}$, $\frac{35660849}{183020745}a^{11}-\frac{96631279}{183020745}a^{10}-\frac{452941308}{61006915}a^{9}+\frac{2355536421}{122013830}a^{8}+\frac{29439077939}{366041490}a^{7}-\frac{38373459991}{183020745}a^{6}-\frac{37152527824}{183020745}a^{5}+\frac{32778052686}{61006915}a^{4}+\frac{9574771818}{61006915}a^{3}-\frac{21197280298}{61006915}a^{2}-\frac{2368053021}{61006915}a+\frac{11576024833}{183020745}$, $\frac{14318367}{48805532}a^{11}-\frac{26910655}{36604149}a^{10}-\frac{276202263}{24402766}a^{9}+\frac{326568737}{12201383}a^{8}+\frac{1538677710}{12201383}a^{7}-\frac{21248959885}{73208298}a^{6}-\frac{13116015701}{36604149}a^{5}+\frac{27065623297}{36604149}a^{4}+\frac{12801521081}{36604149}a^{3}-\frac{16800476603}{36604149}a^{2}-\frac{3234884836}{36604149}a+\frac{2782636603}{36604149}$, $\frac{51245687}{1464165960}a^{11}-\frac{48649093}{366041490}a^{10}-\frac{75428283}{61006915}a^{9}+\frac{1197544387}{244027660}a^{8}+\frac{8038094753}{732082980}a^{7}-\frac{38804379719}{732082980}a^{6}-\frac{135721049}{183020745}a^{5}+\frac{16318132087}{122013830}a^{4}-\frac{5237638679}{122013830}a^{3}-\frac{6137501513}{61006915}a^{2}+\frac{820170839}{61006915}a+\frac{3661928603}{183020745}$, $\frac{7582423}{1464165960}a^{11}-\frac{9792229}{732082980}a^{10}-\frac{23425759}{122013830}a^{9}+\frac{112546883}{244027660}a^{8}+\frac{1436140177}{732082980}a^{7}-\frac{3187100671}{732082980}a^{6}-\frac{1555079417}{366041490}a^{5}+\frac{545642483}{122013830}a^{4}+\frac{1061559619}{122013830}a^{3}+\frac{155492283}{61006915}a^{2}-\frac{226443944}{61006915}a-\frac{331287623}{183020745}$, $\frac{17214687}{488055320}a^{11}-\frac{39108589}{366041490}a^{10}-\frac{159465743}{122013830}a^{9}+\frac{954712861}{244027660}a^{8}+\frac{3225362723}{244027660}a^{7}-\frac{30973308607}{732082980}a^{6}-\frac{4111224337}{183020745}a^{5}+\frac{39206571853}{366041490}a^{4}-\frac{2473766701}{366041490}a^{3}-\frac{13108643587}{183020745}a^{2}+\frac{1142645296}{183020745}a+\frac{2680493939}{183020745}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 68111868.6417 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{12}\cdot(2\pi)^{0}\cdot 68111868.6417 \cdot 2}{2\cdot\sqrt{14515063671969809441792}}\cr\approx \mathstrut & 2.31565187811 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 2*x^11 - 40*x^10 + 72*x^9 + 482*x^8 - 782*x^7 - 1792*x^6 + 2008*x^5 + 2704*x^4 - 1192*x^3 - 1376*x^2 + 184*x + 208);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$A_5^2:C_4$ (as 12T278):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 14400
The 22 conjugacy class representatives for $A_5^2:C_4$
Character table for $A_5^2:C_4$

Intermediate fields

\(\Q(\sqrt{17}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 10 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 25 sibling: data not computed
Degree 30 sibling: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: 10.10.738604909015357696.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ R R ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{4}$ ${\href{/padicField/23.4.0.1}{4} }^{3}$ R ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.12.0.1}{12} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.5.4.1$x^{5} + 2$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
2.6.6.8$x^{6} + 2 x + 2$$6$$1$$6$$S_4$$[4/3, 4/3]_{3}^{2}$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$[\ ]$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.5.0.1$x^{5} + 4 x + 11$$1$$5$$0$$C_5$$[\ ]^{5}$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
\(29\) Copy content Toggle raw display 29.4.0.1$x^{4} + 2 x^{2} + 15 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.4.1$x^{8} + 2784 x^{7} + 2906616 x^{6} + 1348864734 x^{5} + 234834277018 x^{4} + 41857830864 x^{3} + 492109772617 x^{2} + 3561769809750 x + 616658760166$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$