Normalized defining polynomial
\( x^{12} - 43095 x^{10} - 150220 x^{9} + 579490200 x^{8} - 466244190 x^{7} - 3123608892765 x^{6} + 7515402970950 x^{5} + 7206776378221275 x^{4} - 9062974515513700 x^{3} - 5991420705430217400 x^{2} - 10416503841795589200 x + 11016133065262452400 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124220674037581049430090394518362216959104955545802500000000=2^{8}\cdot 3^{20}\cdot 5^{10}\cdot 31^{6}\cdot 43^{6}\cdot 347^{2}\cdot 145242751^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84{,}045.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31, 43, 347, 145242751$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{10} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{7} - \frac{1}{2} a$, $\frac{1}{20} a^{8} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{120} a^{9} - \frac{1}{40} a^{8} - \frac{1}{20} a^{7} - \frac{1}{20} a^{6} + \frac{1}{4} a^{5} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{360} a^{10} - \frac{1}{360} a^{9} + \frac{1}{60} a^{7} - \frac{1}{60} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{5}{18} a - \frac{2}{9}$, $\frac{1}{37859038640632892408341363959161713884377076143828727713340238520296224602743136523600} a^{11} + \frac{95194257971737122561616669123685700528594371100422470988898030718247002142765911}{291223374158714556987241261224320876033669816490990213179540296309970958482639511720} a^{10} + \frac{33429469139619723240798490292574141984854273791407145525838123189362426158148289}{582446748317429113974482522448641752067339632981980426359080592619941916965279023440} a^{9} + \frac{9253295586397044527126216613263589834880764444787807525165823435975023760409683549}{1261967954687763080278045465305390462812569204794290923778007950676540820091437884120} a^{8} + \frac{20972982533466362088550182620526813289590365281530837903348841639660221292763670691}{630983977343881540139022732652695231406284602397145461889003975338270410045718942060} a^{7} - \frac{4684705575427280324239704469879236683843376263818167898915294121545962390782299685}{252393590937552616055609093061078092562513840958858184755601590135308164018287576824} a^{6} + \frac{50068798801043336013927411301074501181502024230392933329869228844181303550203133379}{841311969791842053518696976870260308541712803196193949185338633784360546727625256080} a^{5} + \frac{130266295339391332716236003483645287937341078031638706785650167389662847612761283}{489134866158047705534126149343174597989367908834996482084499205688581713213735614} a^{4} - \frac{5115408330696354689221437004007550625592281067360074525727541076965570843345648217}{168262393958368410703739395374052061708342560639238789837067726756872109345525051216} a^{3} - \frac{253921163639682909649608235955490275739731105796142655917254755822229798821465053511}{757180772812657848166827279183234277687541522876574554266804770405924492054862730472} a^{2} - \frac{111786254341035508096136561829592985680760796238430931509908030539067453874118091027}{378590386406328924083413639591617138843770761438287277133402385202962246027431365236} a + \frac{5941988054537275839923297288276497381317258863019381969270818718053292579533115055}{14561168707935727849362063061216043801683490824549510658977014815498547924131975586}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105166289261000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{12}$ (as 12T300):
| A non-solvable group of order 239500800 |
| The 43 conjugacy class representatives for $A_{12}$ |
| Character table for $A_{12}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.9.20.54 | $x^{9} + 12 x^{6} + 24 x^{3} + 3$ | $9$ | $1$ | $20$ | $((C_3^3:C_3):C_2):C_2$ | $[3/2, 5/2, 8/3, 17/6]_{2}^{2}$ | |
| $5$ | 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |
| $31$ | 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 31.8.4.2 | $x^{8} - 59582 x^{2} + 15699857$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 43 | Data not computed | ||||||
| 347 | Data not computed | ||||||
| 145242751 | Data not computed | ||||||