Normalized defining polynomial
\( x^{12} - 864 x^{10} - 16920 x^{9} - 138510 x^{8} - 527796 x^{7} - 561330 x^{6} + 2519424 x^{5} + 10235160 x^{4} + 15943230 x^{3} + 11868849 x^{2} + 3542940 x + 59049 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12030640053495428917361789703369140625=3^{28}\cdot 5^{18}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1230.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5}$, $\frac{1}{162} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{486} a^{7} - \frac{1}{27} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{1458} a^{8} - \frac{1}{81} a^{5} - \frac{1}{18} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{4374} a^{9} + \frac{1}{486} a^{6} - \frac{1}{18} a^{4} - \frac{1}{18} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{13122} a^{10} + \frac{1}{1458} a^{7} - \frac{1}{54} a^{5} - \frac{1}{18} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{196830} a^{11} + \frac{1}{65610} a^{10} - \frac{1}{4374} a^{8} - \frac{1}{1458} a^{7} - \frac{1}{405} a^{6} + \frac{2}{405} a^{5} - \frac{1}{54} a^{4} - \frac{1}{18} a^{3} - \frac{1}{5} a - \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1657889266260000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{12}$ (as 12T300):
| A non-solvable group of order 239500800 |
| The 43 conjugacy class representatives for $A_{12}$ |
| Character table for $A_{12}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.5.1 | $x^{3} + 3$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.9.23.33 | $x^{9} + 6 x^{6} + 3$ | $9$ | $1$ | $23$ | $(C_3^2:C_3):C_2$ | $[2, 5/2, 17/6, 19/6]_{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.10.18.23 | $x^{10} - 20 x^{9} + 105$ | $10$ | $1$ | $18$ | $(C_5^2 : C_8):C_2$ | $[17/8, 17/8]_{8}^{2}$ | |
| $13$ | 13.5.4.1 | $x^{5} - 13$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ |