Properties

Label 12.12.1161460342...8125.1
Degree $12$
Signature $[12, 0]$
Discriminant $3^{6}\cdot 5^{9}\cdot 13^{8}$
Root discriminant $32.02$
Ramified primes $3, 5, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![31, 409, -1100, -395, 1881, 90, -1136, -20, 291, 10, -30, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 - 30*x^10 + 10*x^9 + 291*x^8 - 20*x^7 - 1136*x^6 + 90*x^5 + 1881*x^4 - 395*x^3 - 1100*x^2 + 409*x + 31)
 
gp: K = bnfinit(x^12 - x^11 - 30*x^10 + 10*x^9 + 291*x^8 - 20*x^7 - 1136*x^6 + 90*x^5 + 1881*x^4 - 395*x^3 - 1100*x^2 + 409*x + 31, 1)
 

Normalized defining polynomial

\( x^{12} - x^{11} - 30 x^{10} + 10 x^{9} + 291 x^{8} - 20 x^{7} - 1136 x^{6} + 90 x^{5} + 1881 x^{4} - 395 x^{3} - 1100 x^{2} + 409 x + 31 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[12, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1161460342986328125=3^{6}\cdot 5^{9}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(195=3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(107,·)$, $\chi_{195}(68,·)$, $\chi_{195}(139,·)$, $\chi_{195}(79,·)$, $\chi_{195}(16,·)$, $\chi_{195}(113,·)$, $\chi_{195}(53,·)$, $\chi_{195}(152,·)$, $\chi_{195}(92,·)$, $\chi_{195}(61,·)$, $\chi_{195}(94,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{4652032539149} a^{11} - \frac{1265469434132}{4652032539149} a^{10} - \frac{896114704975}{4652032539149} a^{9} - \frac{147255670844}{4652032539149} a^{8} - \frac{197424562686}{4652032539149} a^{7} - \frac{1565602713643}{4652032539149} a^{6} - \frac{1735650825944}{4652032539149} a^{5} - \frac{697993002356}{4652032539149} a^{4} - \frac{1532298170305}{4652032539149} a^{3} + \frac{66193735903}{150065565779} a^{2} - \frac{1697900980547}{4652032539149} a - \frac{6431800672}{150065565779}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 178876.95142 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.169.1, \(\Q(\zeta_{15})^+\), 6.6.3570125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ R R ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.12.6.1$x^{12} - 243 x^{2} + 1458$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$13$13.12.8.1$x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$