Normalized defining polynomial
\( x^{12} - 4 x^{11} - 3036 x^{10} + 16940 x^{9} + 3435883 x^{8} - 21476268 x^{7} - 1841908992 x^{6} + 11122519452 x^{5} + 490521018900 x^{4} - 2361270759804 x^{3} - 62489273434236 x^{2} + 167503033069380 x + 3005497215363897 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1003808920860966325428537416433732056776704=2^{24}\cdot 3^{10}\cdot 11^{20}\cdot 197^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3163.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{1381062463450314677309785141353293064274467677997552439431012291} a^{11} + \frac{83006382019768183191333538949396496468425209534786159213035059}{1381062463450314677309785141353293064274467677997552439431012291} a^{10} + \frac{62883459503669434361049758728590794028983457053154636630732266}{460354154483438225769928380451097688091489225999184146477004097} a^{9} - \frac{12511363826121536385441804300913603008513163198588757398555147}{1381062463450314677309785141353293064274467677997552439431012291} a^{8} + \frac{349996822644077599378577200870277232265020162260012169887430523}{1381062463450314677309785141353293064274467677997552439431012291} a^{7} - \frac{85390331002057024533612537873499574207746995399646971766097731}{460354154483438225769928380451097688091489225999184146477004097} a^{6} + \frac{216474848890327448307706605949343323756563872794588200715852888}{460354154483438225769928380451097688091489225999184146477004097} a^{5} - \frac{24995165600273939815968172092717379289948075082066950941712984}{460354154483438225769928380451097688091489225999184146477004097} a^{4} - \frac{166264901571010258977340992662247103591192515048522968660419312}{460354154483438225769928380451097688091489225999184146477004097} a^{3} - \frac{9985008638794515714298120552137983138024250415267806753375348}{153451384827812741923309460150365896030496408666394715492334699} a^{2} - \frac{64029408886394080567305230934526590646037925855121654268267116}{153451384827812741923309460150365896030496408666394715492334699} a + \frac{73541827634086676514550564036611713169470446284177156326679891}{153451384827812741923309460150365896030496408666394715492334699}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 377943984207000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{12}$ (as 12T295):
| A non-solvable group of order 95040 |
| The 15 conjugacy class representatives for $M_{12}$ |
| Character table for $M_{12}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.146 | $x^{12} + 10 x^{10} + 6 x^{8} + 8 x^{7} + 16 x^{6} + 8 x^{4} + 16 x^{3} + 16 x^{2} + 16 x - 8$ | $4$ | $3$ | $24$ | 12T60 | $[2, 2, 2, 3, 3]^{3}$ |
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.20.8 | $x^{11} - 11 x^{10} + 1221$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ | |
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |