Normalized defining polynomial
\( x^{12} - 6 x^{11} + 5 x^{10} + 30 x^{9} - 58 x^{8} - 6 x^{7} + 67 x^{6} - 34 x^{5} + 28 x^{4} - 50 x^{3} + 27 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-809662500831232=-\,2^{22}\cdot 37^{4}\cdot 103\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2927} a^{11} + \frac{1095}{2927} a^{10} - \frac{324}{2927} a^{9} + \frac{400}{2927} a^{8} + \frac{1292}{2927} a^{7} - \frac{36}{2927} a^{6} + \frac{1409}{2927} a^{5} - \frac{35}{2927} a^{4} - \frac{456}{2927} a^{3} + \frac{1338}{2927} a^{2} + \frac{884}{2927} a - \frac{1409}{2927}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1825.69372847 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 768 |
| The 38 conjugacy class representatives for [2^6]D(6)=2wrD(6) |
| Character table for [2^6]D(6)=2wrD(6) is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.148.1, 6.6.2803712.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $103$ | 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 103.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |