Normalized defining polynomial
\( x^{12} - x^{11} + 430 x^{10} - 430 x^{9} + 71215 x^{8} - 71215 x^{7} + 5677387 x^{6} - 5677387 x^{5} + 221515009 x^{4} - 221515009 x^{3} + 3782835772 x^{2} - 3782835772 x + 20571919369 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9919430095046378756575453=7^{6}\cdot 13^{11}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1729=7\cdot 13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1729}(1,·)$, $\chi_{1729}(930,·)$, $\chi_{1729}(132,·)$, $\chi_{1729}(134,·)$, $\chi_{1729}(265,·)$, $\chi_{1729}(398,·)$, $\chi_{1729}(400,·)$, $\chi_{1729}(531,·)$, $\chi_{1729}(1462,·)$, $\chi_{1729}(1065,·)$, $\chi_{1729}(932,·)$, $\chi_{1729}(666,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2199393769} a^{7} - \frac{923098515}{2199393769} a^{6} + \frac{231}{2199393769} a^{5} - \frac{223823143}{2199393769} a^{4} + \frac{15246}{2199393769} a^{3} + \frac{1017420151}{2199393769} a^{2} + \frac{251559}{2199393769} a + \frac{129768544}{2199393769}$, $\frac{1}{2199393769} a^{8} + \frac{264}{2199393769} a^{6} - \frac{329261771}{2199393769} a^{5} + \frac{21780}{2199393769} a^{4} + \frac{656652010}{2199393769} a^{3} + \frac{574992}{2199393769} a^{2} - \frac{324421360}{2199393769} a + \frac{2371842}{2199393769}$, $\frac{1}{2199393769} a^{9} - \frac{763962170}{2199393769} a^{6} - \frac{39204}{2199393769} a^{5} + \frac{362329999}{2199393769} a^{4} - \frac{3449952}{2199393769} a^{3} - \frac{597301406}{2199393769} a^{2} - \frac{64039734}{2199393769} a + \frac{931404688}{2199393769}$, $\frac{1}{2199393769} a^{10} - \frac{49005}{2199393769} a^{6} + \frac{886089749}{2199393769} a^{5} - \frac{5390550}{2199393769} a^{4} + \frac{979935559}{2199393769} a^{3} - \frac{160099335}{2199393769} a^{2} - \frac{536607502}{2199393769} a - \frac{704437074}{2199393769}$, $\frac{1}{2199393769} a^{11} - \frac{624990803}{2199393769} a^{6} + \frac{5929605}{2199393769} a^{5} + \frac{903538847}{2199393769} a^{4} + \frac{587030895}{2199393769} a^{3} + \frac{80542792}{2199393769} a^{2} + \frac{626242876}{2199393769} a + \frac{860112541}{2199393769}$
Class group and class number
$C_{2}\times C_{50866}$, which has order $101732$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.38862733.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $19$ | 19.12.6.2 | $x^{12} - 2476099 x^{2} + 141137643$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |