Normalized defining polynomial
\( x^{12} - x^{11} + 66 x^{10} - 222 x^{9} - 1767 x^{8} - 8113 x^{7} + 37220 x^{6} + 82432 x^{5} + 428416 x^{4} - 639536 x^{3} - 3977856 x^{2} - 6304000 x + 28891136 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(988751862409257207447265625=5^{9}\cdot 7^{10}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $177.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(256,·)$, $\chi_{455}(1,·)$, $\chi_{455}(227,·)$, $\chi_{455}(4,·)$, $\chi_{455}(453,·)$, $\chi_{455}(423,·)$, $\chi_{455}(64,·)$, $\chi_{455}(327,·)$, $\chi_{455}(398,·)$, $\chi_{455}(16,·)$, $\chi_{455}(114,·)$, $\chi_{455}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{64} a^{6} + \frac{3}{64} a^{5} - \frac{3}{64} a^{4} - \frac{3}{16} a^{3} + \frac{3}{16} a^{2}$, $\frac{1}{128} a^{8} - \frac{1}{64} a^{6} + \frac{1}{32} a^{5} + \frac{5}{128} a^{4} - \frac{5}{32} a^{3} + \frac{7}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{3}{128} a^{6} - \frac{13}{256} a^{5} + \frac{7}{128} a^{4} + \frac{15}{64} a^{3} - \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{21248} a^{10} + \frac{1}{5312} a^{9} + \frac{7}{10624} a^{8} + \frac{29}{10624} a^{7} - \frac{161}{21248} a^{6} + \frac{425}{10624} a^{5} - \frac{195}{10624} a^{4} - \frac{20}{83} a^{3} - \frac{171}{2656} a^{2} + \frac{15}{664} a - \frac{28}{83}$, $\frac{1}{35318526507468113354752} a^{11} + \frac{430181553951147077}{35318526507468113354752} a^{10} + \frac{707669981221057061}{1103703953358378542336} a^{9} - \frac{61990659799606150703}{17659263253734056677376} a^{8} + \frac{80815716536069650021}{35318526507468113354752} a^{7} + \frac{504267302686089387245}{35318526507468113354752} a^{6} + \frac{742918352703190248217}{17659263253734056677376} a^{5} + \frac{462469168652345802043}{8829631626867028338688} a^{4} - \frac{66248105152554577423}{4414815813433514169344} a^{3} + \frac{9925860120965190787}{68981497084898658896} a^{2} + \frac{75737818113169256087}{275925988339594635584} a - \frac{1986790662258181801}{34490748542449329448}$
Class group and class number
$C_{2}\times C_{4}\times C_{136140}$, which has order $1089120$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 767947.3557001817 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), 3.3.8281.1, 4.0.13456625.2, 6.6.111434311625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.4 | $x^{12} + 30 x^{8} + 275 x^{4} + 1000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |