Normalized defining polynomial
\( x^{12} - 24 x^{9} - 27 x^{8} - 36 x^{7} + 228 x^{6} + 216 x^{5} + 531 x^{4} - 408 x^{3} + 648 x^{2} + 288 x + 2352 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98716277881700352=2^{20}\cdot 3^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} - \frac{11}{32} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{13}{32} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8822140472704} a^{11} + \frac{15486503231}{4411070236352} a^{10} + \frac{121416245265}{2205535118176} a^{9} + \frac{117972152323}{275691889772} a^{8} + \frac{225632831141}{8822140472704} a^{7} - \frac{2079339811191}{4411070236352} a^{6} - \frac{11034297483}{68922972443} a^{5} - \frac{372500300325}{1102767559088} a^{4} - \frac{1404759422877}{8822140472704} a^{3} - \frac{400977667119}{4411070236352} a^{2} + \frac{416577227073}{2205535118176} a - \frac{15023636317}{1102767559088}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{31329}{25333216} a^{11} - \frac{111819}{25333216} a^{10} - \frac{13301}{3166652} a^{9} + \frac{65205}{6333304} a^{8} + \frac{2090643}{25333216} a^{7} + \frac{3653725}{25333216} a^{6} + \frac{86346}{791663} a^{5} - \frac{554679}{3166652} a^{4} + \frac{1694469}{25333216} a^{3} - \frac{329913}{25333216} a^{2} + \frac{2439621}{3166652} a - \frac{646057}{6333304} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10446.8313609 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $D_6:D_6$ |
| Character table for $D_6:D_6$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.432.1, 6.0.11337408.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.16.10 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| $3$ | 3.12.23.161 | $x^{12} - 9 x^{11} + 6 x^{9} - 9 x^{8} + 9 x^{7} - 6 x^{6} - 9 x^{4} - 3 x^{3} - 9 x + 12$ | $12$ | $1$ | $23$ | 12T42 | $[2, 5/2]_{4}^{2}$ |