Normalized defining polynomial
\( x^{12} + 18 x^{10} - 32 x^{9} + 267 x^{8} - 324 x^{7} + 1168 x^{6} - 384 x^{5} + 2799 x^{4} - 228 x^{3} + 4545 x^{2} + 2052 x + 3249 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9845005879332009=3^{18}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{18} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{6} - \frac{7}{18} a^{5} + \frac{5}{18} a^{4} - \frac{2}{9} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{18} a^{9} + \frac{1}{18} a^{6} - \frac{1}{3} a^{5} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6}$, $\frac{1}{18} a^{10} + \frac{1}{18} a^{7} + \frac{2}{9} a^{4} + \frac{1}{6} a$, $\frac{1}{7543105483554} a^{11} + \frac{54890755}{22055863987} a^{10} - \frac{29683722487}{3771552741777} a^{9} + \frac{48708538721}{2514368494518} a^{8} + \frac{46381138840}{3771552741777} a^{7} - \frac{103968134609}{2514368494518} a^{6} + \frac{1591507266322}{3771552741777} a^{5} + \frac{3439199298349}{7543105483554} a^{4} - \frac{886023392771}{3771552741777} a^{3} - \frac{5741902536}{22055863987} a^{2} + \frac{1000086484321}{2514368494518} a + \frac{54324281147}{132335183922}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4102188952}{3771552741777} a^{11} - \frac{66531530}{66167591961} a^{10} + \frac{16329264793}{1257184247259} a^{9} - \frac{223429805149}{3771552741777} a^{8} + \frac{1680842399177}{7543105483554} a^{7} - \frac{3342446322127}{7543105483554} a^{6} + \frac{388918882651}{838122831506} a^{5} - \frac{4364133541997}{7543105483554} a^{4} + \frac{4443930623839}{7543105483554} a^{3} - \frac{86127830828}{66167591961} a^{2} - \frac{191409735199}{1257184247259} a + \frac{14420559703}{132335183922} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3039.60843665 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4$ (as 12T7):
| A solvable group of order 24 |
| The 8 conjugacy class representatives for $A_4 \times C_2$ |
| Character table for $A_4 \times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 6.0.99222003.2, 6.6.33074001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |