Normalized defining polynomial
\( x^{12} + 66 x^{10} - 264 x^{9} + 2178 x^{8} - 12342 x^{7} + 67760 x^{6} - 293304 x^{5} + 1140183 x^{4} - 3637986 x^{3} + 8409258 x^{2} - 12431826 x + 8504001 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(980321113608067580846177488896=2^{12}\cdot 3^{16}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $315.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{12} a^{9} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{36} a^{10} - \frac{1}{36} a^{9} + \frac{1}{36} a^{8} + \frac{1}{18} a^{7} - \frac{2}{9} a^{6} - \frac{7}{36} a^{5} - \frac{1}{2} a^{4} - \frac{5}{12} a^{3} - \frac{1}{6} a^{2} + \frac{1}{4}$, $\frac{1}{6390012980039653969969140} a^{11} + \frac{1238112367049364534091}{580910270912695815451740} a^{10} + \frac{7246276403067943761541}{290455135456347907725870} a^{9} + \frac{5460348707196593793719}{290455135456347907725870} a^{8} - \frac{30234866623405919201959}{580910270912695815451740} a^{7} + \frac{39974348895321417086267}{290455135456347907725870} a^{6} + \frac{2643325435086408362621}{64545585656966201716860} a^{5} + \frac{6573213712283202645929}{38727351394179721030116} a^{4} + \frac{22408147217897206505549}{48409189242724651287645} a^{3} - \frac{2607255286323807157359}{21515195218988733905620} a^{2} + \frac{289021734304603658193}{1075759760949436695281} a - \frac{2597602313224026089323}{21515195218988733905620}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8088983337.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.18.5 | $x^{11} + 110 x^{8} + 11$ | $11$ | $1$ | $18$ | $C_{11}:C_5$ | $[9/5]_{5}$ |