Normalized defining polynomial
\( x^{12} - x^{11} + 110 x^{10} - 79 x^{9} + 4369 x^{8} - 1920 x^{7} + 76481 x^{6} - 8490 x^{5} + 577579 x^{4} + 278581 x^{3} + 1416470 x^{2} + 1806919 x + 3282511 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(978162634246022205561=3^{6}\cdot 7^{10}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(861=3\cdot 7\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{861}(1,·)$, $\chi_{861}(739,·)$, $\chi_{861}(737,·)$, $\chi_{861}(40,·)$, $\chi_{861}(491,·)$, $\chi_{861}(206,·)$, $\chi_{861}(368,·)$, $\chi_{861}(83,·)$, $\chi_{861}(247,·)$, $\chi_{861}(409,·)$, $\chi_{861}(698,·)$, $\chi_{861}(286,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{1651} a^{7} + \frac{70}{1651} a^{5} - \frac{251}{1651} a^{3} + \frac{396}{1651} a + \frac{108}{1651}$, $\frac{1}{1651} a^{8} + \frac{70}{1651} a^{6} - \frac{251}{1651} a^{4} + \frac{396}{1651} a^{2} + \frac{108}{1651} a$, $\frac{1}{18161} a^{9} + \frac{2}{18161} a^{7} - \frac{1}{11} a^{6} - \frac{5011}{18161} a^{5} - \frac{5}{11} a^{4} - \frac{5650}{18161} a^{3} + \frac{6712}{18161} a^{2} + \frac{1139}{18161} a + \frac{5864}{18161}$, $\frac{1}{134982195491} a^{10} + \frac{306694}{12271108681} a^{9} + \frac{24052514}{134982195491} a^{8} - \frac{28153687}{134982195491} a^{7} - \frac{46702536183}{134982195491} a^{6} + \frac{13209257606}{134982195491} a^{5} + \frac{9374292921}{134982195491} a^{4} + \frac{34266138975}{134982195491} a^{3} + \frac{45800564475}{134982195491} a^{2} - \frac{33663494314}{134982195491} a + \frac{5279729930}{12271108681}$, $\frac{1}{134982195491} a^{11} + \frac{379141}{134982195491} a^{9} + \frac{4749414}{134982195491} a^{8} - \frac{146511}{134982195491} a^{7} - \frac{18920911962}{134982195491} a^{6} + \frac{26815173927}{134982195491} a^{5} + \frac{28760519153}{134982195491} a^{4} - \frac{45395049686}{134982195491} a^{3} + \frac{247528643}{1062851933} a^{2} + \frac{2280920555}{134982195491} a - \frac{29746024064}{134982195491}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{14}\times C_{14}$, which has order $1568$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), \(\Q(\sqrt{-287}) \), \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-123})\), 6.0.4467941667.1, 6.0.1158355247.1, \(\Q(\zeta_{21})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $41$ | 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |