Normalized defining polynomial
\( x^{12} - 4 x^{11} - 2 x^{10} + 52 x^{9} - 95 x^{8} - 24 x^{7} + 504 x^{6} - 488 x^{5} + 2337 x^{4} - 2524 x^{3} + 5998 x^{2} - 4180 x + 6497 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9705775651075653632=2^{35}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{7} + \frac{2}{7}$, $\frac{1}{14} a^{8} + \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{98} a^{9} - \frac{3}{98} a^{8} + \frac{2}{49} a^{7} + \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{49} a^{2} + \frac{15}{98} a + \frac{1}{98}$, $\frac{1}{392} a^{10} - \frac{1}{196} a^{9} - \frac{13}{392} a^{8} - \frac{3}{49} a^{7} - \frac{1}{14} a^{6} - \frac{3}{7} a^{5} - \frac{3}{14} a^{4} + \frac{2}{49} a^{3} + \frac{101}{392} a^{2} - \frac{41}{196} a + \frac{183}{392}$, $\frac{1}{30979208383088} a^{11} - \frac{22222201209}{30979208383088} a^{10} - \frac{13290546197}{4425601197584} a^{9} - \frac{1000599134569}{30979208383088} a^{8} + \frac{2512333401}{68538071644} a^{7} + \frac{63734482367}{1106400299396} a^{6} + \frac{485833590273}{1106400299396} a^{5} - \frac{3091620517485}{7744802095772} a^{4} - \frac{9720504219219}{30979208383088} a^{3} + \frac{412694747429}{4425601197584} a^{2} + \frac{8661984209433}{30979208383088} a - \frac{14936622722381}{30979208383088}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7426.02578147 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 12T41):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.100352.5, 6.2.39337984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $7$ | 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |