Normalized defining polynomial
\( x^{12} - 4 x^{11} + 23 x^{10} - 64 x^{9} + 312 x^{8} - 632 x^{7} + 2493 x^{6} - 3780 x^{5} + 13720 x^{4} - 11802 x^{3} + 50834 x^{2} - 14525 x + 89971 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9687897476476640001=3^{6}\cdot 7^{10}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(399=3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{399}(1,·)$, $\chi_{399}(227,·)$, $\chi_{399}(37,·)$, $\chi_{399}(362,·)$, $\chi_{399}(172,·)$, $\chi_{399}(398,·)$, $\chi_{399}(20,·)$, $\chi_{399}(341,·)$, $\chi_{399}(151,·)$, $\chi_{399}(248,·)$, $\chi_{399}(58,·)$, $\chi_{399}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{587} a^{10} - \frac{91}{587} a^{9} + \frac{173}{587} a^{8} + \frac{196}{587} a^{7} + \frac{235}{587} a^{6} - \frac{186}{587} a^{5} + \frac{216}{587} a^{4} - \frac{211}{587} a^{3} - \frac{234}{587} a^{2} + \frac{271}{587} a - \frac{206}{587}$, $\frac{1}{704022234341983061} a^{11} + \frac{5192276514186}{24276628770413209} a^{10} - \frac{55403182339678400}{704022234341983061} a^{9} - \frac{186265927809104148}{704022234341983061} a^{8} - \frac{93789680828306301}{704022234341983061} a^{7} - \frac{23790922603745059}{704022234341983061} a^{6} + \frac{15782900066731261}{704022234341983061} a^{5} + \frac{152609719293345315}{704022234341983061} a^{4} + \frac{121313606388379427}{704022234341983061} a^{3} + \frac{332076716660729618}{704022234341983061} a^{2} + \frac{9418295269481208}{24276628770413209} a + \frac{205325555860862019}{704022234341983061}$
Class group and class number
$C_{168}$, which has order $168$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.798796005 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-399}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-19}, \sqrt{21})\), \(\Q(\zeta_{21})^+\), 6.0.16468459.1, 6.0.3112538751.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |