Normalized defining polynomial
\( x^{12} + 546 x^{10} + 95004 x^{8} + 6722352 x^{6} + 217120176 x^{4} + 3125539872 x^{2} + 15721812288 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(96744152797159210133822373888=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $260.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2184=2^{3}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(773,·)$, $\chi_{2184}(289,·)$, $\chi_{2184}(1297,·)$, $\chi_{2184}(509,·)$, $\chi_{2184}(1181,·)$, $\chi_{2184}(337,·)$, $\chi_{2184}(529,·)$, $\chi_{2184}(629,·)$, $\chi_{2184}(1369,·)$, $\chi_{2184}(125,·)$, $\chi_{2184}(605,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{6048} a^{6} - \frac{1}{4}$, $\frac{1}{6048} a^{7} - \frac{1}{4} a$, $\frac{1}{4935168} a^{8} + \frac{13}{822528} a^{6} + \frac{65}{4896} a^{4} + \frac{71}{3264} a^{2} + \frac{7}{544}$, $\frac{1}{4935168} a^{9} + \frac{13}{822528} a^{7} + \frac{65}{4896} a^{5} + \frac{71}{3264} a^{3} + \frac{7}{544} a$, $\frac{1}{23570362368} a^{10} + \frac{73}{1964196864} a^{8} - \frac{1463}{31177728} a^{6} - \frac{4517}{15588864} a^{4} - \frac{80411}{1299072} a^{2} - \frac{34973}{433024}$, $\frac{1}{542118334464} a^{11} + \frac{157}{15058842624} a^{9} + \frac{130049}{1673204736} a^{7} + \frac{4965707}{358543872} a^{5} - \frac{701689}{29878656} a^{3} - \frac{2952313}{9959552} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{15864}$, which has order $1015296$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6176.96689838073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.8281.1, 4.0.62008128.5, 6.6.891474493.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.4 | $x^{12} - 7 x^{6} + 147$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |