Properties

Label 12.0.96744152797...3888.2
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 13^{11}$
Root discriminant $260.30$
Ramified primes $2, 3, 7, 13$
Class number $1015296$ (GRH)
Class group $[2, 2, 2, 2, 4, 15864]$ (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15721812288, 0, 3125539872, 0, 217120176, 0, 6722352, 0, 95004, 0, 546, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 546*x^10 + 95004*x^8 + 6722352*x^6 + 217120176*x^4 + 3125539872*x^2 + 15721812288)
 
gp: K = bnfinit(x^12 + 546*x^10 + 95004*x^8 + 6722352*x^6 + 217120176*x^4 + 3125539872*x^2 + 15721812288, 1)
 

Normalized defining polynomial

\( x^{12} + 546 x^{10} + 95004 x^{8} + 6722352 x^{6} + 217120176 x^{4} + 3125539872 x^{2} + 15721812288 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(96744152797159210133822373888=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 13^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $260.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2184=2^{3}\cdot 3\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(773,·)$, $\chi_{2184}(289,·)$, $\chi_{2184}(1297,·)$, $\chi_{2184}(509,·)$, $\chi_{2184}(1181,·)$, $\chi_{2184}(337,·)$, $\chi_{2184}(529,·)$, $\chi_{2184}(629,·)$, $\chi_{2184}(1369,·)$, $\chi_{2184}(125,·)$, $\chi_{2184}(605,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{6048} a^{6} - \frac{1}{4}$, $\frac{1}{6048} a^{7} - \frac{1}{4} a$, $\frac{1}{4935168} a^{8} + \frac{13}{822528} a^{6} + \frac{65}{4896} a^{4} + \frac{71}{3264} a^{2} + \frac{7}{544}$, $\frac{1}{4935168} a^{9} + \frac{13}{822528} a^{7} + \frac{65}{4896} a^{5} + \frac{71}{3264} a^{3} + \frac{7}{544} a$, $\frac{1}{23570362368} a^{10} + \frac{73}{1964196864} a^{8} - \frac{1463}{31177728} a^{6} - \frac{4517}{15588864} a^{4} - \frac{80411}{1299072} a^{2} - \frac{34973}{433024}$, $\frac{1}{542118334464} a^{11} + \frac{157}{15058842624} a^{9} + \frac{130049}{1673204736} a^{7} + \frac{4965707}{358543872} a^{5} - \frac{701689}{29878656} a^{3} - \frac{2952313}{9959552} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{15864}$, which has order $1015296$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6176.96689838073 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.8281.1, 4.0.62008128.5, 6.6.891474493.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }$ R ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.12.0.1}{12} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.3$x^{4} + 2 x^{2} + 20$$2$$2$$6$$C_4$$[3]^{2}$
2.4.6.3$x^{4} + 2 x^{2} + 20$$2$$2$$6$$C_4$$[3]^{2}$
2.4.6.3$x^{4} + 2 x^{2} + 20$$2$$2$$6$$C_4$$[3]^{2}$
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.12.10.4$x^{12} - 7 x^{6} + 147$$6$$2$$10$$C_{12}$$[\ ]_{6}^{2}$
$13$13.12.11.4$x^{12} - 832$$12$$1$$11$$C_{12}$$[\ ]_{12}$