Normalized defining polynomial
\( x^{12} - 2 x^{11} + 121 x^{10} - 196 x^{9} + 6618 x^{8} - 8728 x^{7} + 207374 x^{6} - 214002 x^{5} + 3900776 x^{4} - 2880444 x^{3} + 41712696 x^{2} - 17138192 x + 196996801 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95632159177126518718464=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1848=2^{3}\cdot 3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1848}(1,·)$, $\chi_{1848}(373,·)$, $\chi_{1848}(353,·)$, $\chi_{1848}(461,·)$, $\chi_{1848}(109,·)$, $\chi_{1848}(529,·)$, $\chi_{1848}(1781,·)$, $\chi_{1848}(793,·)$, $\chi_{1848}(89,·)$, $\chi_{1848}(1517,·)$, $\chi_{1848}(881,·)$, $\chi_{1848}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{337237438151933739827174521573} a^{11} - \frac{113772380308794756182402037738}{337237438151933739827174521573} a^{10} + \frac{47105866733165559017013862505}{337237438151933739827174521573} a^{9} + \frac{84188685607424662676852503234}{337237438151933739827174521573} a^{8} + \frac{19163483017920506183801779560}{337237438151933739827174521573} a^{7} - \frac{117825196109725502206051520583}{337237438151933739827174521573} a^{6} + \frac{41505998465247814607977825167}{337237438151933739827174521573} a^{5} + \frac{70050535989583981248259270508}{337237438151933739827174521573} a^{4} - \frac{29875105293834916235365501170}{337237438151933739827174521573} a^{3} - \frac{69365584422841851887358176184}{337237438151933739827174521573} a^{2} + \frac{132466496353849182161147428008}{337237438151933739827174521573} a - \frac{130404926922038127655676522633}{337237438151933739827174521573}$
Class group and class number
$C_{2}\times C_{6076}$, which has order $12152$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.7987960054707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-462}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-22})\), \(\Q(\zeta_{21})^+\), 6.0.1636214272.1, 6.0.309244497408.7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |