Properties

Label 12.0.941480149401.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{12}\cdot 11^{6}$
Root discriminant $9.95$
Ramified primes $3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -2, -7, 12, 4, 9, -3, -2, -4, 1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + x^10 - 4*x^9 - 2*x^8 - 3*x^7 + 9*x^6 + 4*x^5 + 12*x^4 - 7*x^3 - 2*x^2 - x + 1)
 
gp: K = bnfinit(x^12 + x^10 - 4*x^9 - 2*x^8 - 3*x^7 + 9*x^6 + 4*x^5 + 12*x^4 - 7*x^3 - 2*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{12} + x^{10} - 4 x^{9} - 2 x^{8} - 3 x^{7} + 9 x^{6} + 4 x^{5} + 12 x^{4} - 7 x^{3} - 2 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(941480149401=3^{12}\cdot 11^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $9.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{30} a^{10} + \frac{1}{15} a^{9} - \frac{7}{15} a^{8} + \frac{1}{6} a^{7} + \frac{2}{15} a^{6} + \frac{4}{15} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{13}{30} a + \frac{2}{15}$, $\frac{1}{90} a^{11} + \frac{1}{90} a^{10} - \frac{1}{90} a^{9} + \frac{19}{90} a^{8} - \frac{31}{90} a^{7} - \frac{19}{90} a^{6} - \frac{11}{45} a^{5} + \frac{2}{15} a^{4} + \frac{1}{3} a^{3} - \frac{37}{90} a^{2} - \frac{13}{30} a + \frac{41}{90}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{2} a^{11} + \frac{1}{2} a^{10} + \frac{2}{3} a^{9} - \frac{3}{2} a^{8} - \frac{17}{6} a^{7} - 3 a^{6} + \frac{8}{3} a^{5} + \frac{17}{3} a^{4} + 9 a^{3} + \frac{17}{6} a^{2} - \frac{11}{6} a - \frac{2}{3} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27.6923649209 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 12T18):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-3}, \sqrt{-11})\), 6.0.107811.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.9.11$x^{6} + 6 x^{4} + 12$$6$$1$$9$$C_6$$[2]_{2}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.12.6.1$x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.3_11.2t1.1c1$1$ $ 3 \cdot 11 $ $x^{2} - x - 8$ $C_2$ (as 2T1) $1$ $1$
* 1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
* 1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.3e2_11.6t1.2c1$1$ $ 3^{2} \cdot 11 $ $x^{6} - 3 x^{5} + 6 x^{4} - 5 x^{3} + 33 x^{2} - 54 x + 111$ $C_6$ (as 6T1) $0$ $-1$
1.3e2.6t1.1c1$1$ $ 3^{2}$ $x^{6} - x^{3} + 1$ $C_6$ (as 6T1) $0$ $-1$
1.3e2.3t1.1c1$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2.3t1.1c2$1$ $ 3^{2}$ $x^{3} - 3 x - 1$ $C_3$ (as 3T1) $0$ $1$
1.3e2_11.6t1.1c1$1$ $ 3^{2} \cdot 11 $ $x^{6} - 18 x^{4} - 8 x^{3} + 81 x^{2} + 72 x - 17$ $C_6$ (as 6T1) $0$ $1$
1.3e2_11.6t1.2c2$1$ $ 3^{2} \cdot 11 $ $x^{6} - 3 x^{5} + 6 x^{4} - 5 x^{3} + 33 x^{2} - 54 x + 111$ $C_6$ (as 6T1) $0$ $-1$
1.3e2_11.6t1.1c2$1$ $ 3^{2} \cdot 11 $ $x^{6} - 18 x^{4} - 8 x^{3} + 81 x^{2} + 72 x - 17$ $C_6$ (as 6T1) $0$ $1$
1.3e2.6t1.1c2$1$ $ 3^{2}$ $x^{6} - x^{3} + 1$ $C_6$ (as 6T1) $0$ $-1$
2.3e4_11.3t2.1c1$2$ $ 3^{4} \cdot 11 $ $x^{3} + 6 x - 1$ $S_3$ (as 3T2) $1$ $0$
2.3e4_11.6t3.2c1$2$ $ 3^{4} \cdot 11 $ $x^{6} - x^{3} - 8$ $D_{6}$ (as 6T3) $1$ $0$
* 2.3e2_11.6t5.1c1$2$ $ 3^{2} \cdot 11 $ $x^{6} - x^{4} - 2 x^{3} + 3 x^{2} + x + 1$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3e2_11.6t5.1c2$2$ $ 3^{2} \cdot 11 $ $x^{6} - x^{4} - 2 x^{3} + 3 x^{2} + x + 1$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3e3_11.12t18.2c1$2$ $ 3^{3} \cdot 11 $ $x^{12} + x^{10} - 4 x^{9} - 2 x^{8} - 3 x^{7} + 9 x^{6} + 4 x^{5} + 12 x^{4} - 7 x^{3} - 2 x^{2} - x + 1$ $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.3e3_11.12t18.2c2$2$ $ 3^{3} \cdot 11 $ $x^{12} + x^{10} - 4 x^{9} - 2 x^{8} - 3 x^{7} + 9 x^{6} + 4 x^{5} + 12 x^{4} - 7 x^{3} - 2 x^{2} - x + 1$ $C_6\times S_3$ (as 12T18) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.