Normalized defining polynomial
\( x^{12} - x^{11} + 353 x^{10} - 111 x^{9} + 50903 x^{8} + 9938 x^{7} + 3828104 x^{6} + 1798584 x^{5} + 158746986 x^{4} + 74673288 x^{3} + 3473412138 x^{2} + 990002287 x + 31603168001 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9378745794895906501953125=5^{9}\cdot 7^{8}\cdot 97^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3395=5\cdot 7\cdot 97\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3395}(1,·)$, $\chi_{3395}(387,·)$, $\chi_{3395}(389,·)$, $\chi_{3395}(193,·)$, $\chi_{3395}(872,·)$, $\chi_{3395}(1163,·)$, $\chi_{3395}(1359,·)$, $\chi_{3395}(1842,·)$, $\chi_{3395}(3299,·)$, $\chi_{3395}(1941,·)$, $\chi_{3395}(2426,·)$, $\chi_{3395}(3103,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{649} a^{9} + \frac{72}{649} a^{8} - \frac{1}{11} a^{7} + \frac{323}{649} a^{6} + \frac{8}{59} a^{5} - \frac{211}{649} a^{4} - \frac{311}{649} a^{3} - \frac{8}{649} a^{2} - \frac{1}{11} a + \frac{159}{649}$, $\frac{1}{649} a^{10} - \frac{51}{649} a^{8} + \frac{28}{649} a^{7} + \frac{196}{649} a^{6} - \frac{57}{649} a^{5} - \frac{46}{649} a^{4} + \frac{318}{649} a^{3} - \frac{12}{59} a^{2} - \frac{136}{649} a + \frac{234}{649}$, $\frac{1}{438267434827304989198319691755324038619} a^{11} - \frac{247020890495605353974061824833679754}{438267434827304989198319691755324038619} a^{10} - \frac{26209395321069793551938306993986583}{39842494075209544472574517432302185329} a^{9} + \frac{152139043971904386684316734004047379925}{438267434827304989198319691755324038619} a^{8} - \frac{90279167009369574864150825193138997121}{438267434827304989198319691755324038619} a^{7} + \frac{39320608685107470051338693506647156228}{438267434827304989198319691755324038619} a^{6} + \frac{82616636362791661253242159565729384116}{438267434827304989198319691755324038619} a^{5} - \frac{10467693392517706758226514231981218994}{39842494075209544472574517432302185329} a^{4} - \frac{10886078162464674697971516320600338620}{438267434827304989198319691755324038619} a^{3} + \frac{119843354873975789087578136828654999655}{438267434827304989198319691755324038619} a^{2} + \frac{129195463808982357713962399288310910518}{438267434827304989198319691755324038619} a - \frac{56398148751308110827929379888133413058}{438267434827304989198319691755324038619}$
Class group and class number
$C_{2}\times C_{2}\times C_{44018}$, which has order $176072$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.1176125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $97$ | 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |