Normalized defining polynomial
\( x^{12} - 6 x^{10} - 8 x^{9} + 9 x^{8} + 60 x^{7} - 122 x^{6} - 324 x^{5} + 513 x^{4} + 876 x^{3} + 972 x^{2} + 432 x + 144 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(935976560656121856=2^{28}\cdot 3^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{9} - \frac{1}{9} a^{6} - \frac{1}{2} a^{5} + \frac{2}{9} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{2160} a^{10} + \frac{7}{360} a^{9} - \frac{1}{40} a^{8} + \frac{5}{108} a^{7} + \frac{19}{720} a^{6} + \frac{43}{120} a^{5} - \frac{49}{1080} a^{4} + \frac{1}{5} a^{3} + \frac{17}{240} a^{2} + \frac{73}{360} a - \frac{1}{20}$, $\frac{1}{19513440} a^{11} - \frac{2023}{9756720} a^{10} + \frac{619}{650448} a^{9} - \frac{218687}{4878360} a^{8} + \frac{1335337}{19513440} a^{7} + \frac{348013}{3252240} a^{6} - \frac{527765}{1951344} a^{5} - \frac{246337}{609795} a^{4} + \frac{273313}{2168160} a^{3} - \frac{455411}{3252240} a^{2} - \frac{510241}{1626120} a - \frac{3339}{22585}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{7187}{2439180} a^{11} - \frac{99}{90340} a^{10} - \frac{6977}{406530} a^{9} - \frac{22121}{1219590} a^{8} + \frac{7571}{271020} a^{7} + \frac{136273}{813060} a^{6} - \frac{502367}{1219590} a^{5} - \frac{7125}{9034} a^{4} + \frac{157181}{90340} a^{3} + \frac{323285}{162612} a^{2} + \frac{66951}{22585} a + \frac{29492}{22585} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30413.7353963 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 12T34):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\), 6.0.322486272.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.8.22.1 | $x^{8} + 8 x^{5} + 6 x^{4} + 16 x^{3} + 8 x^{2} + 12$ | $4$ | $2$ | $22$ | $D_4$ | $[3, 4]^{2}$ | |
| $3$ | 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |