Normalized defining polynomial
\( x^{12} - x^{11} + 13 x^{10} - 14 x^{9} + 138 x^{8} - 128 x^{7} + 377 x^{6} + 12 x^{5} + 431 x^{4} - 60 x^{3} + 195 x^{2} + 50 x + 25 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9291682743890625=3^{6}\cdot 5^{6}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(131,·)$, $\chi_{195}(74,·)$, $\chi_{195}(139,·)$, $\chi_{195}(29,·)$, $\chi_{195}(14,·)$, $\chi_{195}(79,·)$, $\chi_{195}(16,·)$, $\chi_{195}(146,·)$, $\chi_{195}(61,·)$, $\chi_{195}(94,·)$, $\chi_{195}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{755} a^{10} - \frac{346}{755} a^{9} + \frac{358}{755} a^{8} - \frac{39}{755} a^{7} - \frac{257}{755} a^{6} - \frac{318}{755} a^{5} - \frac{298}{755} a^{4} - \frac{323}{755} a^{3} - \frac{324}{755} a^{2} - \frac{60}{151} a - \frac{57}{151}$, $\frac{1}{6058308628445} a^{11} + \frac{2305274479}{6058308628445} a^{10} - \frac{2134501577017}{6058308628445} a^{9} - \frac{1938778936554}{6058308628445} a^{8} + \frac{2367682718933}{6058308628445} a^{7} - \frac{2073626969308}{6058308628445} a^{6} - \frac{664617231333}{6058308628445} a^{5} + \frac{29065935497}{195429310595} a^{4} + \frac{413432499561}{6058308628445} a^{3} + \frac{347793044225}{1211661725689} a^{2} - \frac{88294744774}{1211661725689} a + \frac{524375881260}{1211661725689}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{529617992}{40121249195} a^{11} + \frac{668517648}{40121249195} a^{10} - \frac{6889267202}{40121249195} a^{9} + \frac{9101711556}{40121249195} a^{8} - \frac{14680127089}{8024249839} a^{7} + \frac{85456721409}{40121249195} a^{6} - \frac{200310704977}{40121249195} a^{5} + \frac{1064846883}{1294233845} a^{4} - \frac{38208275105}{8024249839} a^{3} + \frac{121559644291}{40121249195} a^{2} - \frac{15755410925}{8024249839} a + \frac{4215357579}{8024249839} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615.54450504 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), 3.3.169.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 6.0.771147.1, 6.6.3570125.1, 6.0.96393375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |