Normalized defining polynomial
\( x^{12} - x^{11} + 196 x^{10} - 196 x^{9} + 14821 x^{8} - 14821 x^{7} + 541321 x^{6} - 541321 x^{5} + 9755071 x^{4} - 9755071 x^{3} + 78858196 x^{2} - 78858196 x + 226936321 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(92332774415743512085357=13^{11}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(793=13\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{793}(672,·)$, $\chi_{793}(1,·)$, $\chi_{793}(548,·)$, $\chi_{793}(550,·)$, $\chi_{793}(609,·)$, $\chi_{793}(487,·)$, $\chi_{793}(428,·)$, $\chi_{793}(367,·)$, $\chi_{793}(304,·)$, $\chi_{793}(670,·)$, $\chi_{793}(60,·)$, $\chi_{793}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{31175041} a^{7} + \frac{2753224}{31175041} a^{6} + \frac{105}{31175041} a^{5} - \frac{1610168}{31175041} a^{4} + \frac{3150}{31175041} a^{3} - \frac{5053739}{31175041} a^{2} + \frac{23625}{31175041} a + \frac{3937564}{31175041}$, $\frac{1}{31175041} a^{8} + \frac{120}{31175041} a^{6} - \frac{10123319}{31175041} a^{5} + \frac{4500}{31175041} a^{4} - \frac{11047941}{31175041} a^{3} + \frac{54000}{31175041} a^{2} - \frac{9843910}{31175041} a + \frac{101250}{31175041}$, $\frac{1}{31175041} a^{9} + \frac{2415252}{31175041} a^{6} - \frac{8100}{31175041} a^{5} - \frac{4878027}{31175041} a^{4} - \frac{324000}{31175041} a^{3} + \frac{4278991}{31175041} a^{2} - \frac{2733750}{31175041} a - \frac{4882065}{31175041}$, $\frac{1}{31175041} a^{10} - \frac{10125}{31175041} a^{6} - \frac{9079159}{31175041} a^{5} - \frac{506250}{31175041} a^{4} + \frac{2945195}{31175041} a^{3} - \frac{6834375}{31175041} a^{2} - \frac{14885535}{31175041} a - \frac{13668750}{31175041}$, $\frac{1}{31175041} a^{11} - \frac{3172813}{31175041} a^{6} + \frac{556875}{31175041} a^{5} + \frac{4540638}{31175041} a^{4} - \frac{6115666}{31175041} a^{3} + \frac{5424412}{31175041} a^{2} + \frac{7309088}{31175041} a - \frac{5041939}{31175041}$
Class group and class number
$C_{52}\times C_{260}$, which has order $13520$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.8175037.2, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $61$ | 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |