Properties

Label 12.0.92332774415...5357.1
Degree $12$
Signature $[0, 6]$
Discriminant $13^{11}\cdot 61^{6}$
Root discriminant $81.99$
Ramified primes $13, 61$
Class number $13520$ (GRH)
Class group $[52, 260]$ (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![226936321, -78858196, 78858196, -9755071, 9755071, -541321, 541321, -14821, 14821, -196, 196, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 196*x^10 - 196*x^9 + 14821*x^8 - 14821*x^7 + 541321*x^6 - 541321*x^5 + 9755071*x^4 - 9755071*x^3 + 78858196*x^2 - 78858196*x + 226936321)
 
gp: K = bnfinit(x^12 - x^11 + 196*x^10 - 196*x^9 + 14821*x^8 - 14821*x^7 + 541321*x^6 - 541321*x^5 + 9755071*x^4 - 9755071*x^3 + 78858196*x^2 - 78858196*x + 226936321, 1)
 

Normalized defining polynomial

\( x^{12} - x^{11} + 196 x^{10} - 196 x^{9} + 14821 x^{8} - 14821 x^{7} + 541321 x^{6} - 541321 x^{5} + 9755071 x^{4} - 9755071 x^{3} + 78858196 x^{2} - 78858196 x + 226936321 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(92332774415743512085357=13^{11}\cdot 61^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $81.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 61$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(793=13\cdot 61\)
Dirichlet character group:    $\lbrace$$\chi_{793}(672,·)$, $\chi_{793}(1,·)$, $\chi_{793}(548,·)$, $\chi_{793}(550,·)$, $\chi_{793}(609,·)$, $\chi_{793}(487,·)$, $\chi_{793}(428,·)$, $\chi_{793}(367,·)$, $\chi_{793}(304,·)$, $\chi_{793}(670,·)$, $\chi_{793}(60,·)$, $\chi_{793}(62,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{31175041} a^{7} + \frac{2753224}{31175041} a^{6} + \frac{105}{31175041} a^{5} - \frac{1610168}{31175041} a^{4} + \frac{3150}{31175041} a^{3} - \frac{5053739}{31175041} a^{2} + \frac{23625}{31175041} a + \frac{3937564}{31175041}$, $\frac{1}{31175041} a^{8} + \frac{120}{31175041} a^{6} - \frac{10123319}{31175041} a^{5} + \frac{4500}{31175041} a^{4} - \frac{11047941}{31175041} a^{3} + \frac{54000}{31175041} a^{2} - \frac{9843910}{31175041} a + \frac{101250}{31175041}$, $\frac{1}{31175041} a^{9} + \frac{2415252}{31175041} a^{6} - \frac{8100}{31175041} a^{5} - \frac{4878027}{31175041} a^{4} - \frac{324000}{31175041} a^{3} + \frac{4278991}{31175041} a^{2} - \frac{2733750}{31175041} a - \frac{4882065}{31175041}$, $\frac{1}{31175041} a^{10} - \frac{10125}{31175041} a^{6} - \frac{9079159}{31175041} a^{5} - \frac{506250}{31175041} a^{4} + \frac{2945195}{31175041} a^{3} - \frac{6834375}{31175041} a^{2} - \frac{14885535}{31175041} a - \frac{13668750}{31175041}$, $\frac{1}{31175041} a^{11} - \frac{3172813}{31175041} a^{6} + \frac{556875}{31175041} a^{5} + \frac{4540638}{31175041} a^{4} - \frac{6115666}{31175041} a^{3} + \frac{5424412}{31175041} a^{2} + \frac{7309088}{31175041} a - \frac{5041939}{31175041}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{52}\times C_{260}$, which has order $13520$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 120.784031363 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.8175037.2, \(\Q(\zeta_{13})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.12.11.4$x^{12} - 832$$12$$1$$11$$C_{12}$$[\ ]_{12}$
$61$61.6.3.1$x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
61.6.3.1$x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$