Normalized defining polynomial
\( x^{12} + 27 x^{10} - 16 x^{9} + 360 x^{8} - 306 x^{7} + 2919 x^{6} - 2718 x^{5} + 14679 x^{4} - 12427 x^{3} + 42426 x^{2} - 23661 x + 50329 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9159316554578733=3^{19}\cdot 199^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{2611398710212731} a^{11} + \frac{432142014121333}{2611398710212731} a^{10} + \frac{44605706463502}{2611398710212731} a^{9} - \frac{7608762519598}{870466236737577} a^{8} - \frac{106761913806307}{870466236737577} a^{7} - \frac{14094428875487}{290155412245859} a^{6} - \frac{202910451971983}{870466236737577} a^{5} - \frac{250872368590096}{870466236737577} a^{4} + \frac{17422975831177}{290155412245859} a^{3} - \frac{625257929732863}{2611398710212731} a^{2} - \frac{552593986965370}{2611398710212731} a + \frac{391017114721883}{2611398710212731}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{104964438890}{870466236737577} a^{11} - \frac{162651530749}{870466236737577} a^{10} - \frac{2342368665350}{870466236737577} a^{9} - \frac{1059812747477}{290155412245859} a^{8} - \frac{27924298871030}{870466236737577} a^{7} - \frac{10285852916047}{290155412245859} a^{6} - \frac{67460117719283}{290155412245859} a^{5} - \frac{143357220602006}{870466236737577} a^{4} - \frac{292508137749963}{290155412245859} a^{3} - \frac{225126149920966}{870466236737577} a^{2} - \frac{2086353618014743}{870466236737577} a - \frac{265316929314613}{870466236737577} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2380.75581344 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times A_4$ (as 12T51):
| A solvable group of order 96 |
| The 20 conjugacy class representatives for $D_4\times A_4$ |
| Character table for $D_4\times A_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.19.43 | $x^{12} + 3 x^{10} - 3 x^{9} - 3 x^{8} - 3 x^{6} + 3 x^{3} + 3$ | $12$ | $1$ | $19$ | $D_4 \times C_3$ | $[2]_{4}^{2}$ |
| 199 | Data not computed | ||||||