Normalized defining polynomial
\( x^{12} - x^{11} + 40 x^{10} + 362 x^{9} + 3865 x^{8} + 5787 x^{7} + 216950 x^{6} + 605452 x^{5} + 4161656 x^{4} + 6762912 x^{3} + 84181376 x^{2} + 235215360 x + 276287488 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(88620023623867115145360460873=7^{10}\cdot 73^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $258.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(511=7\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{511}(1,·)$, $\chi_{511}(3,·)$, $\chi_{511}(9,·)$, $\chi_{511}(429,·)$, $\chi_{511}(143,·)$, $\chi_{511}(81,·)$, $\chi_{511}(243,·)$, $\chi_{511}(341,·)$, $\chi_{511}(265,·)$, $\chi_{511}(218,·)$, $\chi_{511}(27,·)$, $\chi_{511}(284,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{4} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{5} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{6} + \frac{1}{32} a^{4} + \frac{1}{16} a^{3}$, $\frac{1}{128} a^{7} - \frac{1}{128} a^{6} + \frac{3}{128} a^{5} - \frac{7}{128} a^{4} - \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{9728} a^{8} - \frac{29}{9728} a^{7} - \frac{145}{9728} a^{6} - \frac{219}{9728} a^{5} - \frac{75}{2432} a^{4} + \frac{279}{2432} a^{3} - \frac{49}{304} a^{2} + \frac{47}{152} a + \frac{2}{19}$, $\frac{1}{77824} a^{9} + \frac{115}{38912} a^{7} - \frac{21}{9728} a^{6} - \frac{1179}{77824} a^{5} + \frac{5}{1216} a^{4} + \frac{1163}{19456} a^{3} - \frac{415}{2432} a^{2} - \frac{255}{1216} a - \frac{37}{152}$, $\frac{1}{466944} a^{10} - \frac{1}{233472} a^{9} + \frac{7}{233472} a^{8} - \frac{415}{116736} a^{7} - \frac{2001}{155648} a^{6} - \frac{2977}{233472} a^{5} - \frac{2861}{116736} a^{4} + \frac{2917}{58368} a^{3} + \frac{185}{1824} a^{2} + \frac{1567}{3648} a + \frac{49}{456}$, $\frac{1}{3550848544995320070144} a^{11} + \frac{208531333500043}{591808090832553345024} a^{10} - \frac{82881517135093}{18303343015439794176} a^{9} - \frac{30344630724595}{5191299042390818816} a^{8} + \frac{7307910975390530557}{3550848544995320070144} a^{7} + \frac{7966347707110215065}{1775424272497660035072} a^{6} + \frac{3769989393058163335}{295904045416276672512} a^{5} + \frac{4574870865056093483}{443856068124415008768} a^{4} - \frac{560247652073287367}{36988005677034584064} a^{3} + \frac{97374229506662489}{9247001419258646016} a^{2} + \frac{2661599110101115531}{6935251064443984512} a - \frac{328911771704951521}{866906383055498064}$
Class group and class number
$C_{1147854}$, which has order $1147854$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10182106.529139174 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.261121.1, 4.0.19061833.1, 6.6.4977444894793.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $73$ | 73.12.11.2 | $x^{12} - 1825$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |